Skip-Convolutions for Efficient Video Processing with Amir Habibian - #496

06.28.2021 - By The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Download our free app to listen on your phone

Today we kick off our CVPR coverage joined by Amir Habibian, a senior staff engineer manager at Qualcomm Technologies. 
In our conversation with Amir, whose research primarily focuses on video perception, we discuss a few papers they presented at the event. We explore the paper Skip-Convolutions for Efficient Video Processing, which looks at training discrete variables to end to end into visual neural networks. We also discuss his work on his FrameExit paper, which proposes a conditional early exiting framework for efficient video recognition. 
The complete show notes for this episode can be found at twimlai.com/go/496.

More episodes from The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)