The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Causal Conceptions of Fairness and their Consequences with Sharad Goel - #586

08.08.2022 - By Sam CharringtonPlay

Download our free app to listen on your phone

Download on the App StoreGet it on Google Play

Today we close out our ICML 2022 coverage joined by Sharad Goel, a professor of public policy at Harvard University. In our conversation with Sharad, we discuss his Outstanding Paper award winner Causal Conceptions of Fairness and their Consequences, which seeks to understand what it means to apply causality to the idea of fairness in ML. We explore the two broad classes of intent that have been conceptualized under the subfield of causal fairness and how they differ, the distinct ways causality is treated in economic and statistical contexts vs a computer science and algorithmic context, and why policies are created in the context of causal definitions are suboptimal broadly.

The complete show notes for this episode can be found at twimlai.com/go/586

More episodes from The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)