
Sign up to save your podcasts
Or


In this SEI Podcast, Dr. Eric Heim, a senior machine learning research scientist at Carnegie Mellon University's Software Engineering Institute (SEI), discusses the quantification of uncertainty in machine-learning (ML) systems. ML systems can make wrong predictions and give inaccurate estimates for the uncertainty of their predictions. It can be difficult to predict when their predictions will be wrong. Heim also discusses new techniques to quantify uncertainty, identify causes of uncertainty, and efficiently update ML models to reduce uncertainty in their predictions. The work of Heim and colleagues at the SEI Emerging Technology Center closes the gap between the scientific and mathematical advances from the ML research community and the practitioners who use the systems in real-life contexts, such as software engineers, software developers, data scientists, and system developers.
By Members of Technical Staff at the Software Engineering Institute4.5
1818 ratings
In this SEI Podcast, Dr. Eric Heim, a senior machine learning research scientist at Carnegie Mellon University's Software Engineering Institute (SEI), discusses the quantification of uncertainty in machine-learning (ML) systems. ML systems can make wrong predictions and give inaccurate estimates for the uncertainty of their predictions. It can be difficult to predict when their predictions will be wrong. Heim also discusses new techniques to quantify uncertainty, identify causes of uncertainty, and efficiently update ML models to reduce uncertainty in their predictions. The work of Heim and colleagues at the SEI Emerging Technology Center closes the gap between the scientific and mathematical advances from the ML research community and the practitioners who use the systems in real-life contexts, such as software engineers, software developers, data scientists, and system developers.

273 Listeners

623 Listeners

376 Listeners

1,830 Listeners

638 Listeners

284 Listeners

8,011 Listeners

177 Listeners

189 Listeners

201 Listeners

0 Listeners

0 Listeners

136 Listeners

46 Listeners

59 Listeners

591 Listeners

76 Listeners