
Sign up to save your podcasts
Or


El material fuente, un extracto de una transcripción del video de IBM Technology titulado "What is Retrieval-Augmented Generation (RAG)?", explica un marco diseñado para mejorar la precisión y actualidad de los modelos de lenguaje grandes (LLMs). Marina Danilevsky, científica investigadora de IBM Research, describe cómo los LLMs a menudo presentan desafíos como proporcionar información desactualizada o carecer de fuentes para sus respuestas, lo que puede llevar a respuestas incorrectas o alucinaciones. El marco RAGaborda estos problemas integrando un almacén de contenido al que el LLM accede primero para recuperar información relevante en respuesta a la consulta de un usuario. Este proceso de recuperación aumentadagarantiza que el modelo genere respuestas basadas en datos actualizados y pueda proporcionar evidencia de sus afirmaciones.
By Carlos Andrés Morales MachucaEl material fuente, un extracto de una transcripción del video de IBM Technology titulado "What is Retrieval-Augmented Generation (RAG)?", explica un marco diseñado para mejorar la precisión y actualidad de los modelos de lenguaje grandes (LLMs). Marina Danilevsky, científica investigadora de IBM Research, describe cómo los LLMs a menudo presentan desafíos como proporcionar información desactualizada o carecer de fuentes para sus respuestas, lo que puede llevar a respuestas incorrectas o alucinaciones. El marco RAGaborda estos problemas integrando un almacén de contenido al que el LLM accede primero para recuperar información relevante en respuesta a la consulta de un usuario. Este proceso de recuperación aumentadagarantiza que el modelo genere respuestas basadas en datos actualizados y pueda proporcionar evidencia de sus afirmaciones.