
Sign up to save your podcasts
Or
本期的 21 篇论文如下:
[00:25] 🧮 MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code(MathCoder2:通过模型翻译的数学代码进行持续预训练以提升数学推理能力)
[01:09] 🚀 PrefixQuant: Static Quantization Beats Dynamic through Prefixed Outliers in LLMs(前缀量化:静态量化通过LLMs中的前缀异常值超越动态量化)
[01:59] 🤖 MLLM as Retriever: Interactively Learning Multimodal Retrieval for Embodied Agents(MLLM作为检索器:交互式学习多模态检索以增强具身代理)
[02:33] 🎨 DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models(DICE:离散逆向可控编辑的多项扩散与掩码生成模型)
[03:03] 🔄 Benchmarking Agentic Workflow Generation(代理工作流生成基准测试)
[03:44] 🤖 Agent S: An Open Agentic Framework that Uses Computers Like a Human(Agent S:一个使用计算机如人类的开放代理框架)
[04:23] 🔄 Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow(修正扩散:在修正流中直线性并非必需)
[04:55] 🤖 Intriguing Properties of Large Language and Vision Models(大型语言与视觉模型的引人特性)
[05:35] 🎥 Progressive Autoregressive Video Diffusion Models(渐进式自回归视频扩散模型)
[06:26] 🌲 Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning(基于MCTS的LLMs自我改进:利用逐步知识与课程偏好学习)
[07:10] 🌐 Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality(保留预训练视觉语言模型的多模态能力以提升视觉语言组合性)
[07:50] 🤖 GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models(GLOV:引导大型语言模型作为视觉语言模型的隐式优化器)
[08:36] 🧩 SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe(SFTMix:利用Mixup方法提升语言模型指令微调)
[09:15] 🔄 Emergent properties with repeated examples(重复示例的涌现特性)
[09:57] 🤖 Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System(优化基于LLM的多智能体系统的有效性与效率)
[10:40] 🎲 Cheating Automatic LLM Benchmarks: Null Models Achieve High Win Rates(欺骗自动LLM基准测试:空模型实现高胜率)
[11:14] 🌐 Everything Everywhere All at Once: LLMs can In-Context Learn Multiple Tasks in Superposition(无处不在同时进行:LLMs 可以在叠加状态下进行多任务上下文学习)
[11:58] 🧬 LPZero: Language Model Zero-cost Proxy Search from Zero(LPZero:从零开始的零成本代理搜索)
[12:41] 🌐 MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting(MotionGS:探索显式运动引导的可变形3D高斯喷射)
[13:15] 🔍 Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations(扩展你的卷积核:大卷积核设计在卷积神经网络中的通用表示)
[13:51] 🖼 DART: Denoising Autoregressive Transformer for Scalable Text-to-Image Generation(DART:去噪自回归Transformer用于可扩展的文本到图像生成)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递
本期的 21 篇论文如下:
[00:25] 🧮 MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code(MathCoder2:通过模型翻译的数学代码进行持续预训练以提升数学推理能力)
[01:09] 🚀 PrefixQuant: Static Quantization Beats Dynamic through Prefixed Outliers in LLMs(前缀量化:静态量化通过LLMs中的前缀异常值超越动态量化)
[01:59] 🤖 MLLM as Retriever: Interactively Learning Multimodal Retrieval for Embodied Agents(MLLM作为检索器:交互式学习多模态检索以增强具身代理)
[02:33] 🎨 DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models(DICE:离散逆向可控编辑的多项扩散与掩码生成模型)
[03:03] 🔄 Benchmarking Agentic Workflow Generation(代理工作流生成基准测试)
[03:44] 🤖 Agent S: An Open Agentic Framework that Uses Computers Like a Human(Agent S:一个使用计算机如人类的开放代理框架)
[04:23] 🔄 Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow(修正扩散:在修正流中直线性并非必需)
[04:55] 🤖 Intriguing Properties of Large Language and Vision Models(大型语言与视觉模型的引人特性)
[05:35] 🎥 Progressive Autoregressive Video Diffusion Models(渐进式自回归视频扩散模型)
[06:26] 🌲 Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning(基于MCTS的LLMs自我改进:利用逐步知识与课程偏好学习)
[07:10] 🌐 Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality(保留预训练视觉语言模型的多模态能力以提升视觉语言组合性)
[07:50] 🤖 GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models(GLOV:引导大型语言模型作为视觉语言模型的隐式优化器)
[08:36] 🧩 SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe(SFTMix:利用Mixup方法提升语言模型指令微调)
[09:15] 🔄 Emergent properties with repeated examples(重复示例的涌现特性)
[09:57] 🤖 Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System(优化基于LLM的多智能体系统的有效性与效率)
[10:40] 🎲 Cheating Automatic LLM Benchmarks: Null Models Achieve High Win Rates(欺骗自动LLM基准测试:空模型实现高胜率)
[11:14] 🌐 Everything Everywhere All at Once: LLMs can In-Context Learn Multiple Tasks in Superposition(无处不在同时进行:LLMs 可以在叠加状态下进行多任务上下文学习)
[11:58] 🧬 LPZero: Language Model Zero-cost Proxy Search from Zero(LPZero:从零开始的零成本代理搜索)
[12:41] 🌐 MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting(MotionGS:探索显式运动引导的可变形3D高斯喷射)
[13:15] 🔍 Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations(扩展你的卷积核:大卷积核设计在卷积神经网络中的通用表示)
[13:51] 🖼 DART: Denoising Autoregressive Transformer for Scalable Text-to-Image Generation(DART:去噪自回归Transformer用于可扩展的文本到图像生成)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递