NLP Highlights

37 - On Statistical Significance, Training Variance, and Why Reporting Score Distributions Matters


Listen Later

In this episode we talk about a couple of recent papers that get at the issue of training variance, and why we should not just take the max from a training distribution when reporting results. Sadly, our current focus on performance in leaderboards only exacerbates these issues, and (in my opinion) encourages bad science.
Papers:
https://www.semanticscholar.org/paper/Reporting-Score-Distributions-Makes-a-Difference-P-Reimers-Gurevych/0eae432f7edacb262f3434ecdb2af707b5b06481
https://www.semanticscholar.org/paper/Deep-Reinforcement-Learning-that-Matters-Henderson-Islam/90dad036ab47d683080c6be63b00415492b48506
...more
View all episodesView all episodes
Download on the App Store

NLP HighlightsBy Allen Institute for Artificial Intelligence

  • 4.3
  • 4.3
  • 4.3
  • 4.3
  • 4.3

4.3

23 ratings


More shows like NLP Highlights

View all
Data Skeptic by Kyle Polich

Data Skeptic

480 Listeners

Up First from NPR by NPR

Up First from NPR

56,180 Listeners