NLP Highlights

58 - Learning What’s Easy: Fully Differentiable Neural Easy-First Taggers, with André Martins


Listen Later

EMNLP 2017 paper by André F. T. Martins and Julia Kreutzer
André comes on the podcast to talk to us the paper. We spend the bulk of the time talking about the two main contributions of the paper: how they applied the notion of "easy first" decoding to neural taggers, and the details of the constrained softmax that they introduced to accomplish this. We conclude that "easy first" might not be the right name for this - it's doing something that in the end is very similar to stacked self-attention, with standard independent decoding at the end. The particulars of the self-attention are inspired by "easy first", however, using a constrained softmax to enforce some novel constraints on the self-attention.
https://www.semanticscholar.org/paper/Learning-What's-Easy%3A-Fully-Differentiable-Neural-Martins-Kreutzer/252571243aa4c0b533aa7fc63f88d07fd844e7bb
...more
View all episodesView all episodes
Download on the App Store

NLP HighlightsBy Allen Institute for Artificial Intelligence

  • 4.3
  • 4.3
  • 4.3
  • 4.3
  • 4.3

4.3

23 ratings


More shows like NLP Highlights

View all
Data Skeptic by Kyle Polich

Data Skeptic

480 Listeners

Up First from NPR by NPR

Up First from NPR

56,180 Listeners