NLP Highlights

60 - FEVER: a large-scale dataset for Fact Extraction and VERification, with James Thorne


Listen Later

NAACL 2018 paper by James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal
James tells us about his paper, where they created a dataset for fact checking. We talk about how this dataset relates to other datasets, why a new one was needed, how it was built, and how well the initial baseline does on this task. There are some interesting side notes on bias in dataset construction, and on how "fact checking" relates to "fake news" ("fake news" could mean that an article is actively trying to deceive or mislead you; "fact checking" here is just determining if a single claim is true or false given a corpus of assumed-correct reference material). The baseline system does quite poorly, and the lowest-hanging fruit seems to be in improving the retrieval component that finds relevant supporting evidence for claims.
There's a workshop and shared task coming up on this dataset: http://fever.ai/. The shared task test period starts on July 24th - get your systems ready!
https://www.semanticscholar.org/paper/FEVER%3A-a-Large-scale-Dataset-for-Fact-Extraction-Thorne-Vlachos/7b1f840ecfafb94d2d9e6e926696dba7fad0bb88
...more
View all episodesView all episodes
Download on the App Store

NLP HighlightsBy Allen Institute for Artificial Intelligence

  • 4.3
  • 4.3
  • 4.3
  • 4.3
  • 4.3

4.3

23 ratings


More shows like NLP Highlights

View all
Data Skeptic by Kyle Polich

Data Skeptic

480 Listeners

Up First from NPR by NPR

Up First from NPR

56,180 Listeners