Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Causality: A Brief Introduction, published by Tom Everitt on June 20, 2023 on The AI Alignment Forum.
Post 2 of Towards Causal Foundations of Safe AGI, see also Post 1 Introduction.
By Lewis Hammond, Tom Everitt, Francis Rhys Ward, Ryan Carey, Sebastian Benthall, and James Fox, representing the Causal Incentives Working Group. Thanks also to Alexis Bellot, Toby Shevlane, and Aliya Ahmad.
Causal models are the foundations of our work. In this post, we provide a succinct but accessible explanation of causal models that can handle interventions, counterfactuals, and agents, which will be the building blocks of future posts in the sequence. Basic familiarity with (conditional) probabilities will be assumed.
What is causality?
What does it mean for the rain to cause the grass to become green? Causality is a philosophically intriguing topic that underlies many other concepts of human importance. In particular, many concepts relevant to safe AGI, like influence, response, agency, intent, fairness, harm, and manipulation, cannot be grasped without a causal model of the world, as we mentioned in the intro post and will discuss further in subsequent posts.
We follow Pearl and adopt an interventionist definition of causality: the sprinkler today causally influences the greenness of the grass tomorrow, because if someone intervened and turned on the sprinkler, then the greenness of the grass would be different. In contrast, making the grass green tomorrow has no effect on the sprinkler today (assuming no one predicts the intervention). So the sprinkler today causally influences the grass tomorrow, but not vice versa, as we would intuitively expect.
Interventions
Causal Bayesian Networks (CBNs) represent causal dependencies between aspects of reality using a directed acyclic graph. An arrow from a variable A to a variable B means that A influences B under some fixed setting of the other variables. For example, we draw an arrow from sprinkler (S) to grass greenness (G):
For each node in the graph, a causal mechanism of how the node is influenced by its parents is specified with a conditional probability distribution. For the sprinkler, a distribution p(S) specifies how commonly it is turned on, e.g. P(S=on)=30%. For the grass, a conditional distribution p(G∣S) specifies how likely it is that the grass becomes green when the sprinkler is on, e.g. p(G=green∣S=on)=100%, and how likely it is that the grass becomes green when the sprinkler is off, e.g. p(G=green∣S=off)=30%.
By multiplying the distributions together, we get a joint probability distribution p(S,G)=p(S)p(G∣S) that describes the likelihood of any combination of outcomes.
An intervention on a system changes one or more causal mechanisms. For example, an intervention that turns the sprinkler on corresponds to replacing the causal mechanism p(S)for the sprinkler, with a new mechanism 1(S=on) that always has the sprinkler on. The effects of the intervention can be computed from the updated joint distribution p(S,G∣do(S=on))=1(S=on)intervenedmechanismp(G∣S) where do(S=on) denotes the intervention.
Ultimately, all statistical correlations are due to casual influences. Hence, for a set of variables there is always some CBN that represents the underlying causal structure of the data generating process, though extra variables may be needed to explain e.g. unmeasured confounders.
Counterfactuals
Suppose that the sprinkler is on and the grass is green. Would the grass have been green had the sprinkler not been on? Questions about counterfactuals like these are harder than questions about interventions, because they involve reasoning across multiple worlds.
To handle such reasoning, structural causal models (SCMs) refine CBNs in three important ways. First, background context that is shared across hypothetical worlds is ex...