Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: The "no sandbagging on checkable tasks" hypothesis, published by Joe Carlsmith on July 31, 2023 on The AI Alignment Forum.
(This post is inspired by Carl Shulman's recent podcast with Dwarkesh Patel, which I highly recommend. See also discussion from Buck Shlegeris and Ryan Greenblatt here, and Evan Hubinger here.)
Introduction
Consider:
The "no sandbagging on checkable tasks" hypothesis: With rare exceptions, if a not-wildly-superhuman ML model is capable of doing some task X, and you can check whether it has done X, then you can get it to do X using already-available training techniques (e.g., fine-tuning it using gradient descent).
Borrowing from Shulman, here's an example of the sort of thing I mean. Suppose that you have a computer that you don't know how to hack, and that only someone who had hacked it could make a blue banana show up on the screen. You're wondering whether a given model can hack this computer. And suppose that in fact, it can, but that doing so would be its least favorite thing in the world. Can you train this model to make a blue banana show up on the screen? The "no sandbagging on checkable tasks" hypothesis answers: probably.
I think it's an important question whether this hypothesis, or something in the vicinity, is true. In particular, if it's true, I think we're in a substantively better position re: existential risk from misaligned AI, because we'll be able to know better what our AI systems can do, and we'll be able to use them to do lots of helpful-for-safety stuff (for example: finding and patching cybersecurity vulnerabilities, reporting checkable evidence for misalignment, identifying problems with our oversight processes, helping us develop interpretability tools, and so on).
I'm currently pretty unsure whether the "no sandbagging on checkable tasks" hypothesis is true. My main view is that it's worth investigating further. My hope with this blog post is to help bring the hypothesis into focus as a subject of debate/research, and to stimulate further thinking about what sorts of methods for lowering AI risk might be available if it's true, even in worlds where many models might otherwise want to deceive us about their abilities.
Thanks to Beth Barnes, Paul Christiano, Lukas Finnveden, Evan Hubinger, Buck Shlegeris, and Carl Shulman for discussion. My thinking and writing on this topic occurred in the context of my work at Open Philanthropy, but I'm speaking only for myself and not for my employer.
Clarifying the hypothesis
In popular usage, "sandbagging" means something like "intentionally performing at a lower level than you're capable of." Or at least, that's the sort of usage I'm interested in. Still, the word is an imperfect fit. In particular, the "sandbagging" being disallowed here needn't be intentional. A model, for example, might not know that it's capable of performing the checkable task in question.
That said, the intentional version is often the version at stake in stories about AI risk. That is, one way for a misaligned, power-seeking AI system to gain a strategic advantage over humans is to intentionally conceal its full range of abilities, and/or to sabotage/redirect the labor we ask it to perform while we still have control over it (for example: by inserting vulnerabilities into code it writes; generating alignment ideas that won't actually work but which will advantage its own long-term aims; and so on).
Can you always use standard forms of ML training to prevent this behavior? Well, if you can't check how well a model is performing at a task, then you don't have a good training signal. Thus, for example, suppose you have a misaligned model that has the ability to generate tons of great ideas that would help with alignment, but it doesn't want to. And suppose that unfortunately, you can't check which alignment ide...