Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Towards understanding-based safety evaluations, published by Evan Hubinger on March 15, 2023 on The AI Alignment Forum.
Thanks to Kate Woolverton, Ethan Perez, Beth Barnes, Holden Karnofsky, and Ansh Radhakrishnan for useful conversations, comments, and feedback.
Recently, I have noticed a lot of momentum within AI safety specifically, the broader AI field, and our society more generally, towards the development of standards and evaluations for advanced AI systems. See, for example, OpenAI's GPT-4 System Card.
Overall, I think that this is a really positive development. However, while I like the sorts of behavioral evaluations discussed in the GPT-4 System Card (e.g. ARC's autonomous replication evaluation) as a way of assessing model capabilities, I have a pretty fundamental concern with these sorts of techniques as a mechanism for eventually assessing alignment.
I often worry about situations where your model is attempting to deceive whatever tests are being run on it, either because it's itself a deceptively aligned agent or because it's predicting what it thinks a deceptively aligned AI would do. My concern is that, in such a situation, being able to robustly evaluate the safety of a model could be a more difficult problem than finding training processes that robustly produce safe models. For some discussion of why I think checking for deceptive alignment might be harder than avoiding it, see here and here. Put simply: checking for deception in a model requires going up against a highly capable adversary that is attempting to evade detection, while preventing deception from arising in the first place doesn't necessarily require that.
As a result, it seems quite plausible to me that we could end up locking in a particular sort of evaluation framework (e.g. behavioral testing by an external auditor without transparency, checkpoints, etc.) that makes evaluating deception very difficult. If meeting such a standard then became synonymous with safety, getting labs to actually put effort into ensuring their models were non-deceptive could become essentially impossible.
However, there's an obvious alternative here, which is building and focusing our evaluations on our ability to understand our models rather than our ability to evaluate their behavior. Rather than evaluating a final model, an understanding-based evaluation would evaluate the developer's ability to understand what sort of model they got and why they got it. I think that an understanding-based evaluation could be substantially more tractable in terms of actually being sufficient for safety here: rather than just checking the model's behavior, we're checking the reasons why we think we understand it's behavior sufficiently well to not be concerned that it'll be dangerous.
It's worth noting that I think understanding-based evaluations can—and I think should—go hand-in-hand with behavioral evaluations. I think the main way you’d want to make some sort of understanding-based standard happen would be to couple it with a capability-based evaluation, where the understanding requirements become stricter as the model’s capabilities increase. If we could get this right, it could channel a huge amount of effort towards understanding models in a really positive way.
Understanding as a safety standard also has the property that it is something that broader society tends to view as extremely reasonable, which I think makes it a much more achievable ask as a safety standard than many other plausible alternatives. I think ML people are often Stockholm-syndrome'd into accepting that deploying powerful systems without understanding them is normal and reasonable, but that is very far from the norm in any other industry. Ezra Klein in the NYT and John Oliver on his show have recently emphasized this basic point that if we are ...