Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Underspecification of Oracle AI, published by Rubi J. Hudson on January 15, 2023 on The AI Alignment Forum.
Rubi and Johannes worked on this post as part of the SERI MATS program, with Evan Hubinger providing mentorship to both. Rubi also received mentorship from Leo Gao. Thanks to Paul Colognese and Nicholas Schiefer for discussions related to this post.
An oracle is a type of AI system that only answers questions without taking any other actions in the world. Simulators and generative models, which have seen increased discussion recently (links: 1, 2, 3, 4), can be thought of as types of oracles. Such systems may simultaneously be powerful enough to generate a pivotal act while also being easier to align due to a more limited domain.
One major concern with oracles is that the answers they give can still manipulate the world. If oracles are evaluated on predictive accuracy, this gives them an incentive to use their answers to affect the course of events and make the world more predictable. Concretely, we are concerned that oracles may make self-fulfilling prophecies (also known as self-confirming predictions or fixed points), where the act of making the prediction causes the predicted outcome to come true. Even if their manipulation does not terminate in a fixed point, attempts to influence the world towards predictability can be very dangerous.
As one example, consider a highly trusted oracle asked to predict the stock market. If such an oracle predicts that stock prices will rise, then people buy based off that prediction and the price will in fact rise. Similarly, if the oracle predicts that prices will fall, then people will sell, causing prices to fall. For a more real world example, see this market and this market, each on whether a specific person will find a research/romantic partner. Here, high probabilities would indicate desirability of that person, while low probabilities would suggest some hidden flaw, either of which could influence whether potential partners decide to reach out and therefore how the market resolves.
In both the stock market and partnership cases, multiple predictions are valid, so how does the oracle choose between them? Ideally, we would like it to choose the one that is “better” for humanity, but this now introduces an outer alignment question similar to an agentic AI acting directly on the world, and which we wanted to avoid by using oracles in the first place.
Instead, what we can aim for is an oracle that does not take into account the consequences of the prediction it makes when choosing a prediction. Then, there is only one valid prediction for the oracle to make, since the rest of the world is constant from its perspective. This can be thought of as a type of partial agency, optimizing the prediction in some directions but not others. It would be extremely desirable as a safety property, removing all incentives for an oracle to manipulate the world. To emphasize the importance of this property, we introduce new terminology, dubbing oracles “consequence-blind” if they exhibit the desired behavior and “consequence-aware” if they do not.
For an oracle, consequence-blindness is equivalent to following a lonely causal decision theory. The causal decision theory blinds the oracle to any acausal influence, while the loneliness component makes it blind to its influence on other agents, which are necessary intermediaries for a prediction to influence the world.
In this post we will primarily consider an oracle trained via supervised learning on a historical data set. There are a number of different policies that could be learned which minimize loss on the training set, and we will explore the different ways these can generalize. We divide the generalization behavior into a number of different axes, and for each axis discuss the potenti...