Papers Read on AI

AugMax: Adversarial Composition of Random Augmentations for Robust Training


Listen Later

Data augmentation is a simple yet effective way to improve the robustness of deep neural networks (DNNs). Diversity and hardness are two complementary dimensions of data augmentation to achieve robustness. For example, AugMix explores random compositions of a diverse set of augmentations to enhance broader coverage, while adversarial training generates adversarially hard samples to spot the weakness. Motivated by this, we propose a data augmentation framework, termed AugMax, to unify the two aspects of diversity and hardness. AugMax first randomly samples multiple augmentation operators and then learns an adversarial mixture of the selected operators. Being a stronger form of data augmentation, AugMax leads to a significantly augmented input distribution which makes model training more challenging.
2021: Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, A. Anandkumar, Zhangyang Wang
https://arxiv.org/pdf/2110.13771v1.pdf
...more
View all episodesView all episodes
Download on the App Store

Papers Read on AIBy Rob

  • 3.7
  • 3.7
  • 3.7
  • 3.7
  • 3.7

3.7

3 ratings