Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

Bioinformatics Methods for NMR Chemical Shift Data


Listen Later

Nuclear magnetic resonance spectroscopy (NMR) is one of the most important methods for measuring the three-dimensional structure of biomolecules. Despite major progress in the NMR methodology, the solution of a protein structure is still a tedious and time-consuming task. The goal of this thesis is to develop bioinformatics methods which may strongly accelerate the NMR process. This work concentrates on a special type of measurements, the so-called chemical shifts. Chemical shifts are routinely measured at the beginning of a structure resolution process. As all data from the laboratory, chemical shifts may be error-prone, which might complicate or even circumvent the use of this data. Therefore, as the first result of the thesis, we present CheckShift, a method which automatically corrects a frequent error in NMR chemical shift data. However, the main goal of this thesis is the extraction of structural information hidden in chemical shifts. SimShift was developed as a first step in this direction. SimShift is the first approach to identify structural similarities between proteins based on chemical shifts. Compared to methods based on the amino acid sequence alone, SimShift shows its strength in detecting distant structural relationships. As a natural further development of the pairwise comparison of proteins, the SimShift algorithm is adapted for database searching. Given a protein, the improved algorithm, named SimShiftDB, searches a database of solved proteins for structurally homologue entries. The search is based only on the amino acid sequence and the associated chemical shifts. The detected similarities are additionally ranked based on calculations of statistical significance. Finally, the Chemical Shift Pipeline, the main result of this work, is presented. By combining automatic chemical shift error correction (CheckShift) and the database search algorithm (SimShiftDB), it is possible to achieve very high quality in 70% to 80% of the similarities identified. Thereby, only about 10% of the predictions are in error.
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02By Ludwig-Maximilians-Universität München

  • 5
  • 5
  • 5
  • 5
  • 5

5

1 ratings


More shows like Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

View all
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19 by Ludwig-Maximilians-Universität München

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19

0 Listeners

LMU Kapitalgesellschaftsrecht by Dr. jur. Timo Fest, LL.M. (Pennsylvania)

LMU Kapitalgesellschaftsrecht

0 Listeners

LMU Grundkurs Strafrecht I (L-Z) WS 2014/15 by Prof. Dr. jur. Helmut Satzger

LMU Grundkurs Strafrecht I (L-Z) WS 2014/15

0 Listeners

MCMP – Metaphysics and Philosophy of Language by MCMP Team

MCMP – Metaphysics and Philosophy of Language

2 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

John Lennox - Hat die Wissenschaft Gott begraben? by Professor John C. Lennox, University of Oxford

John Lennox - Hat die Wissenschaft Gott begraben?

4 Listeners

LMU Rechtsphilosophie by Prof. Dr. jur. Dr. jur. h.c. mult. Bernd Schünemann

LMU Rechtsphilosophie

0 Listeners

MCMP – Philosophy of Mathematics by MCMP Team

MCMP – Philosophy of Mathematics

2 Listeners

LMU Wiederholung und Vertiefung zum Schuldrecht - Lehrstuhl für Bürgerliches Recht by Professor Dr. Stephan Lorenz

LMU Wiederholung und Vertiefung zum Schuldrecht - Lehrstuhl für Bürgerliches Recht

0 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners