Nuclear magnetic resonance spectroscopy (NMR) is one of the most important methods for measuring the three-dimensional structure of biomolecules. Despite major progress in the NMR methodology, the solution of a protein structure is still a tedious and time-consuming task. The goal of this thesis is to develop bioinformatics methods which may strongly accelerate the NMR process. This work concentrates on a special type of measurements, the so-called chemical shifts. Chemical shifts are routinely measured at the beginning of a structure resolution process. As all data from the laboratory, chemical shifts may be error-prone, which might complicate or even circumvent the use of this data. Therefore, as the first result of the thesis, we present CheckShift, a method which automatically corrects a frequent error in NMR chemical shift data. However, the main goal of this thesis is the extraction of structural information hidden in chemical shifts. SimShift was developed as a first step in this direction. SimShift is the first approach to identify structural similarities between proteins based on chemical shifts. Compared to methods based on the amino acid sequence alone, SimShift shows its strength in detecting distant structural relationships. As a natural further development of the pairwise comparison of proteins, the SimShift algorithm is adapted for database searching. Given a protein, the improved algorithm, named SimShiftDB, searches a database of solved proteins for structurally homologue entries. The search is based only on the amino acid sequence and the associated chemical shifts. The detected similarities are additionally ranked based on calculations of statistical significance. Finally, the Chemical Shift Pipeline, the main result of this work, is presented. By combining automatic chemical shift error correction (CheckShift) and the database search algorithm (SimShiftDB), it is possible to achieve very high quality in 70% to 80% of the similarities identified. Thereby, only about 10% of the predictions are in error.