
Sign up to save your podcasts
Or
Host Kevin Patton summarizes the 2019 Nobel Prize in Physiology or Medicine to three scientists "for their discoveries of how cells sense and adapt to oxygen availability." A special bonus episode.
00:41 | Introduction to Bonus Episode 02:00 | Sponsored by HAPS 02:24 | Summary of Discovery 04:13 | Oxygen at Center Stage 05:24 | HIF Enters the Scene08:08 | Sponsored by AAA 08:26 | VHL - An Unexpected Partner 11:37 | Oxygen sHIFts the Balance 13:20 | Oxygen Shapes Physiology & Pathology 15:15 | Sponsored by HAPI Online Graduate Program 15:48 | Our Course 23:46 | Staying Connected
If you cannot see or activate the audio player click here. Questions & Feedback: 1-833-LION-DEN (1-833-546-6336) Follow The A&P Professor on Twitter, Facebook, Blogger, Nuzzel, Tumblr, or Instagram!
Singing is like a celebration of oxygen. (Björk)
1 | Introduction to the Bonus Episode
1 minute
Kevin introduces the bonus episode, explaining that he's sharing the press release for the 2019 Nobel Prize in Physiology or Medicine. It's chunked for clarity.
Press release: The Nobel Prize in Physiology or Medicine 2019. NobelPrize.org. Nobel Media AB 2019. Mon. 7 Oct 2019.
2 | Sponsored by HAPS
2 minutes
The Human Anatomy & Physiology Society (HAPS) is a sponsor of this podcast. You can help appreciate their support by clicking the link below and checking out the many resources and benefits found there. There are a bunch of 1-day regional workshops scattered all over the continent. There's probably one near you coming up this year (or next)!
Anatomy & Physiology Society
theAPprofessor.org/haps
3 | Summary of the Discovery
2 minutes
4 | Oxygen at Center Stage
1 minute
During evolution, mechanisms developed to ensure a sufficient supply of oxygen to tissues and cells.
5 | HIF Enters the Scene
3 minutes
6 | Sponsored by AAA
0.5 minutes
7 | VHL - An Unexpected Partner
3 minutes
When oxygen levels are low (hypoxia), HIF-1α is protected from degradation and accumulates in the nucleus, where it associates with ARNT and binds to specific DNA sequences (HRE) in hypoxia-regulated genes (1). At normal oxygen levels, HIF-1α is rapidly degraded by the proteasome (2). Oxygen regulates the degradation process by the addition of hydroxyl groups (OH) to HIF-1α (3). The VHL protein can then recognize and form a complex with HIF-1α leading to its degradation in an oxygen-dependent manner (4). https://my-ap.us/35fm0O6
8 | Oxygen sHIFts the Balance
1.5 minutes
9 | Oxygen Shapes Physiology & Pathology
2 minutes
The awarded mechanism for oxygen sensing has fundamental importance in physiology, for example for our metabolism, immune response and ability to adapt to exercise. Many pathological processes are also affected. Intensive efforts are ongoing to develop new drugs that can either inhibit or activate the oxygen-regulated machinery for treatment of anemia, cancer and other diseases. https://my-ap.us/2LW2cIb
10 | Sponsored by HAPI Online Graduate Program1 minute
The Master of Science in Human Anatomy & Physiology Instruction—the MS-HAPI—is a graduate program for A&P teachers. A combination of science courses (enough to qualify you to teach at the college level) and courses in contemporary instructional practice, this program helps you power up your teaching. Kevin Patton is a faculty member in this program. Check it out!
nycc.edu/hapi
11 | Our Course
8 minutes
Semenza, G.L, Nejfelt, M.K., Chi, S.M. & Antonarakis, S.E. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci USA, 88, 5680-5684 my-ap.us/2ontmP8
Wang, G.L., Jiang, B.-H., Rue, E.A. & Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA, 92, 5510-5514 my-ap.us/2IxLUD5
Maxwell, P.H., Wiesener, M.S., Chang, G.-W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R. & Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271-275 my-ap.us/2op4XbP
Mircea, I., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. & Kaelin Jr., W.G. (2001) HIFa targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292, 464-468 my-ap.us/2IxIf8t
Jakkola, P., Mole, D.R., Tian, Y.-M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Heberstreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. (2001). Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468-472 my-ap.us/35i4wR9
If the hyperlinks here are not active, go to TAPPradio.org to find the episode page.
Sponsors Transcript and captions for this episode are supported by the American Association for Anatomy. anatomy.org The Human Anatomy & Physiology Society also provides marketing support for this podcast. theAPprofessor.org/haps Distribution of this episode is supported by NYCC's online graduate program in Human Anatomy & Physiology Instruction (HAPI) nycc.edu/hapi Clicking on sponsor links helps let them know you appreciate their support of this podcast! Referrals also help defray podcasting expenses. Amazon TextExpander Snagit & Camtasia The A&P Professor Logo Items Follow The A&P Professor on Twitter, Facebook, Blogger, Nuzzel, Tumblr, or Instagram! The A&P Professor® and Lion Den® are registered trademarks of Lion Den Inc. (Kevin Patton)
4.7
1717 ratings
Host Kevin Patton summarizes the 2019 Nobel Prize in Physiology or Medicine to three scientists "for their discoveries of how cells sense and adapt to oxygen availability." A special bonus episode.
00:41 | Introduction to Bonus Episode 02:00 | Sponsored by HAPS 02:24 | Summary of Discovery 04:13 | Oxygen at Center Stage 05:24 | HIF Enters the Scene08:08 | Sponsored by AAA 08:26 | VHL - An Unexpected Partner 11:37 | Oxygen sHIFts the Balance 13:20 | Oxygen Shapes Physiology & Pathology 15:15 | Sponsored by HAPI Online Graduate Program 15:48 | Our Course 23:46 | Staying Connected
If you cannot see or activate the audio player click here. Questions & Feedback: 1-833-LION-DEN (1-833-546-6336) Follow The A&P Professor on Twitter, Facebook, Blogger, Nuzzel, Tumblr, or Instagram!
Singing is like a celebration of oxygen. (Björk)
1 | Introduction to the Bonus Episode
1 minute
Kevin introduces the bonus episode, explaining that he's sharing the press release for the 2019 Nobel Prize in Physiology or Medicine. It's chunked for clarity.
Press release: The Nobel Prize in Physiology or Medicine 2019. NobelPrize.org. Nobel Media AB 2019. Mon. 7 Oct 2019.
2 | Sponsored by HAPS
2 minutes
The Human Anatomy & Physiology Society (HAPS) is a sponsor of this podcast. You can help appreciate their support by clicking the link below and checking out the many resources and benefits found there. There are a bunch of 1-day regional workshops scattered all over the continent. There's probably one near you coming up this year (or next)!
Anatomy & Physiology Society
theAPprofessor.org/haps
3 | Summary of the Discovery
2 minutes
4 | Oxygen at Center Stage
1 minute
During evolution, mechanisms developed to ensure a sufficient supply of oxygen to tissues and cells.
5 | HIF Enters the Scene
3 minutes
6 | Sponsored by AAA
0.5 minutes
7 | VHL - An Unexpected Partner
3 minutes
When oxygen levels are low (hypoxia), HIF-1α is protected from degradation and accumulates in the nucleus, where it associates with ARNT and binds to specific DNA sequences (HRE) in hypoxia-regulated genes (1). At normal oxygen levels, HIF-1α is rapidly degraded by the proteasome (2). Oxygen regulates the degradation process by the addition of hydroxyl groups (OH) to HIF-1α (3). The VHL protein can then recognize and form a complex with HIF-1α leading to its degradation in an oxygen-dependent manner (4). https://my-ap.us/35fm0O6
8 | Oxygen sHIFts the Balance
1.5 minutes
9 | Oxygen Shapes Physiology & Pathology
2 minutes
The awarded mechanism for oxygen sensing has fundamental importance in physiology, for example for our metabolism, immune response and ability to adapt to exercise. Many pathological processes are also affected. Intensive efforts are ongoing to develop new drugs that can either inhibit or activate the oxygen-regulated machinery for treatment of anemia, cancer and other diseases. https://my-ap.us/2LW2cIb
10 | Sponsored by HAPI Online Graduate Program1 minute
The Master of Science in Human Anatomy & Physiology Instruction—the MS-HAPI—is a graduate program for A&P teachers. A combination of science courses (enough to qualify you to teach at the college level) and courses in contemporary instructional practice, this program helps you power up your teaching. Kevin Patton is a faculty member in this program. Check it out!
nycc.edu/hapi
11 | Our Course
8 minutes
Semenza, G.L, Nejfelt, M.K., Chi, S.M. & Antonarakis, S.E. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci USA, 88, 5680-5684 my-ap.us/2ontmP8
Wang, G.L., Jiang, B.-H., Rue, E.A. & Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA, 92, 5510-5514 my-ap.us/2IxLUD5
Maxwell, P.H., Wiesener, M.S., Chang, G.-W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R. & Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271-275 my-ap.us/2op4XbP
Mircea, I., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. & Kaelin Jr., W.G. (2001) HIFa targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292, 464-468 my-ap.us/2IxIf8t
Jakkola, P., Mole, D.R., Tian, Y.-M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Heberstreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. (2001). Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468-472 my-ap.us/35i4wR9
If the hyperlinks here are not active, go to TAPPradio.org to find the episode page.
Sponsors Transcript and captions for this episode are supported by the American Association for Anatomy. anatomy.org The Human Anatomy & Physiology Society also provides marketing support for this podcast. theAPprofessor.org/haps Distribution of this episode is supported by NYCC's online graduate program in Human Anatomy & Physiology Instruction (HAPI) nycc.edu/hapi Clicking on sponsor links helps let them know you appreciate their support of this podcast! Referrals also help defray podcasting expenses. Amazon TextExpander Snagit & Camtasia The A&P Professor Logo Items Follow The A&P Professor on Twitter, Facebook, Blogger, Nuzzel, Tumblr, or Instagram! The A&P Professor® and Lion Den® are registered trademarks of Lion Den Inc. (Kevin Patton)
6,241 Listeners
760 Listeners
175 Listeners