
Sign up to save your podcasts
Or
This paper presents a cost-efficient evaluation framework for large language models, introducing "Cer-Eval" to optimize test sample selection, reducing evaluation points by 20-40% while ensuring reliable performance estimates.
https://arxiv.org/abs//2505.03814
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
5
33 ratings
This paper presents a cost-efficient evaluation framework for large language models, introducing "Cer-Eval" to optimize test sample selection, reducing evaluation points by 20-40% while ensuring reliable performance estimates.
https://arxiv.org/abs//2505.03814
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
711 Listeners
204 Listeners
280 Listeners
72 Listeners
428 Listeners