
Sign up to save your podcasts
Or


In this episode, we dive into the cutting-edge world of multi-messenger astronomy. We explore how scientists are using a global network of specialized telescopes to solve one of the greatest mysteries in physics: the origin of high-energy cosmic rays. By tracking "ghost particles" called neutrinos from the depths of the South Pole to the highest mountain peaks where gamma-ray telescopes wait, researchers are building a new map of the most violent processes in our universe.
Key Discussion Points:
Featured Reference:
FACT, H.E.S.S., MAGIC, VERITAS, Fermi-LAT, and IceCube Collaborations. (2025). Prompt Searches for Very-High-Energy $\gamma$-Ray Counterparts to IceCube Astrophysical Neutrino Alerts. Accepted at the Astrophysical Journal, arXiv: https://arxiv.org/abs/2512.16562
Acknowledements: Podcast prepared with Google/NotebookLM. Illustration credits: IceCube/NASA
By Astro-COLIBRIIn this episode, we dive into the cutting-edge world of multi-messenger astronomy. We explore how scientists are using a global network of specialized telescopes to solve one of the greatest mysteries in physics: the origin of high-energy cosmic rays. By tracking "ghost particles" called neutrinos from the depths of the South Pole to the highest mountain peaks where gamma-ray telescopes wait, researchers are building a new map of the most violent processes in our universe.
Key Discussion Points:
Featured Reference:
FACT, H.E.S.S., MAGIC, VERITAS, Fermi-LAT, and IceCube Collaborations. (2025). Prompt Searches for Very-High-Energy $\gamma$-Ray Counterparts to IceCube Astrophysical Neutrino Alerts. Accepted at the Astrophysical Journal, arXiv: https://arxiv.org/abs/2512.16562
Acknowledements: Podcast prepared with Google/NotebookLM. Illustration credits: IceCube/NASA