PaperPlayer biorxiv biochemistry

Complex effects of pH on ROS from mitochondrial complex II driven complex I reverse electron transport challenge its role in tissue reperfusion injury


Listen Later

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2020.08.31.275438v1?rss=1
Authors: Milliken, A. S., Kulkarni, C., Brookes, P. S.
Abstract:
Generation of mitochondrial reactive oxygen species (ROS) is an important process in triggering cellular necrosis and tissue infarction during ischemia-reperfusion (IR) injury. Ischemia results in accumulation of the metabolite succinate. Rapid oxidation of this succinate by mitochondrial complex II (Cx-II) during reperfusion reduces the co-enzyme Q (Co-Q) pool, thereby driving electrons backward into complex-I (Cx-I), a process known as reverse electron transport (RET), which is thought to be a major source of ROS. During ischemia, enhanced glycolysis results in an acidic cellular pH at the onset of reperfusion. While the process of RET within Cx-I is known to be enhanced by a high mitochondrial trans-membrane {Delta}pH, the impact of pH itself on the integrated process of Cx-II to Cx-I RET has not been fully studied. Using isolated mitochondria under conditions which mimic the onset of reperfusion (i.e., high [ADP]). We show that mitochondrial respiration (state 2 and state 3) as well as isolated Cx-II activity are impaired at acidic pH, whereas the overall generation of ROS by Cx-II to Cx-I RET was insensitive to pH. Together these data indicate that the acceleration of Cx-I RET ROS by {Delta}pH appears to be cancelled out by the impact of pH on the source of electrons, i.e. Cx-II. Implications for the role of Cx-II to Cx-I RET derived ROS in IR injury are discussed.
Copy rights belong to original authors. Visit the link for more info
...more
View all episodesView all episodes
Download on the App Store

PaperPlayer biorxiv biochemistryBy Multimodal LLC