
Sign up to save your podcasts
Or
In this episode we introduce an extension of the exponential function to arguments from the field of complex numbers. We briefly address convergence of sequences and series of complex numbers. We recover several properties from the real exponential function also in the complex case. Most importantly, we also have the functional equation valid in the complex case; thus, this newly defined function is both never zero and continuous, much like the real exponential function.
In this episode we introduce an extension of the exponential function to arguments from the field of complex numbers. We briefly address convergence of sequences and series of complex numbers. We recover several properties from the real exponential function also in the complex case. Most importantly, we also have the functional equation valid in the complex case; thus, this newly defined function is both never zero and continuous, much like the real exponential function.