Medizin - Open Access LMU - Teil 12/22

Computer-assisted ex vivo, normothermic small bowel perfusion


Listen Later

Background: In the present study, a technique for computer-assisted, normothermic, oxygenated, ex vivo, recirculating small bowel perfusion was established as a tool to investigate organ pretreatment protocols and ischemia/reperfusion phenomena. A prerequisite for the desired setup was an organ chamber for ex vivo perfusion and the use of syngeneic whole blood as perfusate. Methods: The entire small bowel was harvested from Lewis rats and perfused in an organ chamber ex vivo for at least 2 h. The temperature was kept at 37 degrees C in a water bath. Three experimental groups were explored, characterized by different perfusion solutions. The basic perfusate consisted of syngeneic whole blood diluted with either NaCl, Krebs' solution or Krebs' solution and norepinephrine to a hematocrit of 30%. In addition, in each group l-glutamine was administered intraluminally. The desired perfusion pressure was 100 mm Hg which was kept constant with a computer-assisted data acquisition software, which measured an-line pressure, oxygenation, flow, temperature and pH and adjusted the pressure by changing the flow via a peristaltic pump. The viability of the preparation was tested by measuring oxygen consumption and maltose absorption, which requires intact enzymes of the mucosal brush border to break down maltose into glucose. Results: Organ perfusion in group 1 (dilution with NaCl) revealed problems such as hypersecretion into the bowel lumen, low vascular resistance and no maltose uptake. In contrast a viable organ could be demonstrated using Krebs' solution as dilution solution. The addition of norepinephrine led to an improved perfusion over the entire perfusion period. Maltose absorption was comparable to tests conducted with native small bower. Oxygen consumption was stable during the 2-hour perfusion period. Conclusions: The ex vivo perfusion system established enables small bowel perfusion for at least 2 h. The viability of the graft could be demonstrated. The perfusion time achieved is sufficient to study leukocyte/lymphocyte interaction with the endothelium of the graft vessels. In addition, a viable small bowel, after 2 h of ex vivo perfusion, facilitates testing of pretreatment protocols for the reduction of the immunogenicity of small bowel allografts. Copyright (C) 2000 S. Karger AG, Basel.
...more
View all episodesView all episodes
Download on the App Store

Medizin - Open Access LMU - Teil 12/22By Ludwig-Maximilians-Universität München


More shows like Medizin - Open Access LMU - Teil 12/22

View all
Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

Chemie und Pharmazie - Open Access LMU - Teil 01/02 by Ludwig-Maximilians-Universität München

Chemie und Pharmazie - Open Access LMU - Teil 01/02

0 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

1 Listeners

MCMP – Logic by MCMP Team

MCMP – Logic

2 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

ISCB34 - 34th Annual Conference of the International Society for Clinical Biostatistics - Munich, 25-29 August 2013 by Prof. Dr. rer. nat. Ulrich Mansmann

ISCB34 - 34th Annual Conference of the International Society for Clinical Biostatistics - Munich, 25-29 August 2013

0 Listeners

MCMP – Philosophy of Physics by MCMP Team

MCMP – Philosophy of Physics

3 Listeners

LMU An introduction to Bohmian Mechanics by Florian Hoffmann und Nicola Vona

LMU An introduction to Bohmian Mechanics

2 Listeners