PaperPlayer biorxiv biophysics

Control of helical navigation by three-dimensional flagellar beating


Listen Later

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2020.09.27.315606v1?rss=1
Authors: Cortese, D., Wan, K. Y.
Abstract:
Helical swimming is a ubiquitous strategy for motile cells to generate self-gradients for environmental sensing. The model biflagellate Chlamydomonas reinhardtii rotates at a constant 1 - 2 Hz as it swims, but the mechanism is unclear. Here, we show unequivocally that the rolling motion derives from a persistent, non-planar flagellar beat pattern. This is revealed by high-speed imaging and micromanipulation of live cells. We construct a fully-3D model to relate flagellar beating directly to the free-swimming trajectories. For realistic geometries, the model reproduces both the sense and magnitude of the axial rotation of live cells. We show that helical swimming requires further symmetry-breaking between the two flagella. These functional differences underlie all tactic responses, particularly phototaxis. We propose a control strategy by which cells steer towards or away from light by modulating the sign of biflagellar dominance.
Copy rights belong to original authors. Visit the link for more info
...more
View all episodesView all episodes
Download on the App Store

PaperPlayer biorxiv biophysicsBy Multimodal LLC