
Sign up to save your podcasts
Or
Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:ParGo: Bridging Vision-Language with Partial and Global ViewsSummary
This research introduces ParGo, a novel vision-language projector designed to improve multimodal large language models (MLLMs). ParGo bridges the gap between vision and language by integrating both global and partial views of images, addressing the limitations of previous methods that overemphasize prominent regions. A new dataset, ParGoCap-1M-PT, containing one million detail-captioned images, was created to facilitate ParGo's training. Extensive experiments demonstrate ParGo's superior performance on various MLLM benchmarks, especially in tasks requiring detailed perception. The key innovation is ParGo's ability to leverage both broad and specific image information.
这项研究介绍了ParGo,一种旨在提升多模态大型语言模型(MLLMs)的新型视觉-语言投影器。ParGo通过集成图像的全局视图和局部视图,弥合了视觉与语言之间的鸿沟,解决了以往方法过于强调显著区域的局限性。为了促进ParGo的训练,研究团队创建了一个新的数据集ParGoCap-1M-PT,其中包含一百万个详细标注图像。大量实验表明,ParGo在多个MLLM基准测试中表现出色,尤其是在需要细致感知的任务上。其关键创新在于ParGo能够同时利用图像的广泛信息和特定信息。
原文链接:https://arxiv.org/abs/2408.12928
Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:ParGo: Bridging Vision-Language with Partial and Global ViewsSummary
This research introduces ParGo, a novel vision-language projector designed to improve multimodal large language models (MLLMs). ParGo bridges the gap between vision and language by integrating both global and partial views of images, addressing the limitations of previous methods that overemphasize prominent regions. A new dataset, ParGoCap-1M-PT, containing one million detail-captioned images, was created to facilitate ParGo's training. Extensive experiments demonstrate ParGo's superior performance on various MLLM benchmarks, especially in tasks requiring detailed perception. The key innovation is ParGo's ability to leverage both broad and specific image information.
这项研究介绍了ParGo,一种旨在提升多模态大型语言模型(MLLMs)的新型视觉-语言投影器。ParGo通过集成图像的全局视图和局部视图,弥合了视觉与语言之间的鸿沟,解决了以往方法过于强调显著区域的局限性。为了促进ParGo的训练,研究团队创建了一个新的数据集ParGoCap-1M-PT,其中包含一百万个详细标注图像。大量实验表明,ParGo在多个MLLM基准测试中表现出色,尤其是在需要细致感知的任务上。其关键创新在于ParGo能够同时利用图像的广泛信息和特定信息。
原文链接:https://arxiv.org/abs/2408.12928