Seventy3

【第139期】多语种控制机器人的能力评估


Listen Later

Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。

今天的主题是:Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models

Summary

This research paper evaluates the performance of several multilingual Small Language Models (SLMs) and one Arabic-centric Large Language Model (LLM) on vision-and-language navigation (VLN) tasks. Using the NavGPT framework and a bilingual (English and Arabic) version of the R2R dataset, the study assesses the models' reasoning and planning capabilities in both languages. The findings highlight the importance of robust multilingual models for effective VLN, especially in Arabic-speaking regions where such resources are limited. The study also identifies limitations in current models, including parsing issues and insufficient reasoning abilities, suggesting areas for future development. The quantitative and qualitative analyses compare the models' success rates, navigation errors, and planning strategies across languages.

这篇研究论文评估了几种多语言小型语言模型(SLMs)和一个以阿拉伯语为中心的大型语言模型(LLM)在视觉-语言导航(VLN)任务中的表现。使用NavGPT框架和一个双语(英语和阿拉伯语)版本的R2R数据集,研究评估了这些模型在两种语言中的推理和规划能力。研究结果强调了强大多语言模型在有效VLN中的重要性,特别是在阿拉伯语地区,这些资源仍然较为匮乏。研究还指出了当前模型的局限性,包括语法解析问题和不足的推理能力,并提出了未来发展的方向。通过定量和定性分析,论文比较了这些模型在不同语言中的成功率、导航错误和规划策略。

原文链接:https://arxiv.org/abs/2501.05478

...more
View all episodesView all episodes
Download on the App Store

Seventy3By 任雨山