
Sign up to save your podcasts
Or
Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:Knowledge in multi-robot systems: an interplay of dynamics, computation and communicationSummary
This paper bridges the gap between control theory, distributed computing, and temporal epistemic logic to analyze multi-robot systems. It formulates robot behaviors using both hybrid dynamical systems and state machines executing look-compute-move cycles, demonstrating compatibility between these models. The authors introduce the concept of "time paths" to synchronize local robot executions within a global time frame and establish epistemic frames to reason about robot knowledge and task solvability. Sufficient epistemic conditions are derived for exploration, surveillance, and gathering tasks, showing how the robots can accomplish these tasks under specific knowledge-based requirements. The exploration task shows that the classic LUMI robot model is very powerful for information gathering. The framework aims to integrate multiple perspectives for a comprehensive approach to multi-robot systems.
本论文融合了控制理论、分布式计算和时态认知逻辑,以分析多机器人系统。研究使用混合动力系统和执行“观察-计算-移动”循环的状态机来建模机器人行为,并证明了这些模型之间的兼容性。作者提出了“时间路径”概念,以在全局时间框架内同步本地机器人执行,并建立了认知框架来推理机器人知识与任务可解性。研究推导出了探索、监视和聚集任务的充分认知条件,展示了机器人在特定知识要求下完成任务的方法。探索任务的分析表明,经典的 LUMI 机器人模型在信息收集方面具有强大能力。该框架旨在整合多种视角,为多机器人系统提供全面的研究方法。
原文链接:https://arxiv.org/abs/2501.18309
Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:Knowledge in multi-robot systems: an interplay of dynamics, computation and communicationSummary
This paper bridges the gap between control theory, distributed computing, and temporal epistemic logic to analyze multi-robot systems. It formulates robot behaviors using both hybrid dynamical systems and state machines executing look-compute-move cycles, demonstrating compatibility between these models. The authors introduce the concept of "time paths" to synchronize local robot executions within a global time frame and establish epistemic frames to reason about robot knowledge and task solvability. Sufficient epistemic conditions are derived for exploration, surveillance, and gathering tasks, showing how the robots can accomplish these tasks under specific knowledge-based requirements. The exploration task shows that the classic LUMI robot model is very powerful for information gathering. The framework aims to integrate multiple perspectives for a comprehensive approach to multi-robot systems.
本论文融合了控制理论、分布式计算和时态认知逻辑,以分析多机器人系统。研究使用混合动力系统和执行“观察-计算-移动”循环的状态机来建模机器人行为,并证明了这些模型之间的兼容性。作者提出了“时间路径”概念,以在全局时间框架内同步本地机器人执行,并建立了认知框架来推理机器人知识与任务可解性。研究推导出了探索、监视和聚集任务的充分认知条件,展示了机器人在特定知识要求下完成任务的方法。探索任务的分析表明,经典的 LUMI 机器人模型在信息收集方面具有强大能力。该框架旨在整合多种视角,为多机器人系统提供全面的研究方法。
原文链接:https://arxiv.org/abs/2501.18309