
Sign up to save your podcasts
Or
Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:TokenVerse: Versatile Multi-concept Personalization in Token Modulation SpaceSummary
TokenVerse introduces a new method for multi-concept personalization in text-to-image generation. The technique extracts visual elements and attributes from single or multiple images using only text captions and a pre-trained diffusion model. By leveraging the modulation space within Diffusion Transformers, TokenVerse disentangles complex concepts like objects, poses, and lighting. This enables users to combine these learned concepts in novel ways to create customized images without needing additional supervision like masks. TokenVerse shows significant advantages over existing personalization techniques, providing greater flexibility and control for personalized content creation and storytelling. The paper presents quantitative and qualitative results demonstrating the effectiveness of the TokenVerse framework.
TokenVerse 提出了一个用于 文本到图像生成 的新方法,旨在实现多概念个性化。该技术通过仅使用文本描述和预训练的扩散模型,从单一或多个图像中提取视觉元素和属性。通过利用扩散变换器(Diffusion Transformers)中的调制空间,TokenVerse 解构了诸如物体、姿势和光照等复杂概念。
这种方法使用户能够以创新的方式将这些学习到的概念进行组合,从而创建个性化图像,而无需像遮罩(masks)之类的额外监督。与现有的个性化技术相比,TokenVerse 展现了显著的优势,提供了更大的灵活性和控制力,促进了个性化内容创作和叙事的实现。
论文通过定量和定性结果展示了 TokenVerse 框架的有效性,证明了其在个性化生成和故事创作中的潜力。
原文链接:https://arxiv.org/abs/2501.12224
Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:TokenVerse: Versatile Multi-concept Personalization in Token Modulation SpaceSummary
TokenVerse introduces a new method for multi-concept personalization in text-to-image generation. The technique extracts visual elements and attributes from single or multiple images using only text captions and a pre-trained diffusion model. By leveraging the modulation space within Diffusion Transformers, TokenVerse disentangles complex concepts like objects, poses, and lighting. This enables users to combine these learned concepts in novel ways to create customized images without needing additional supervision like masks. TokenVerse shows significant advantages over existing personalization techniques, providing greater flexibility and control for personalized content creation and storytelling. The paper presents quantitative and qualitative results demonstrating the effectiveness of the TokenVerse framework.
TokenVerse 提出了一个用于 文本到图像生成 的新方法,旨在实现多概念个性化。该技术通过仅使用文本描述和预训练的扩散模型,从单一或多个图像中提取视觉元素和属性。通过利用扩散变换器(Diffusion Transformers)中的调制空间,TokenVerse 解构了诸如物体、姿势和光照等复杂概念。
这种方法使用户能够以创新的方式将这些学习到的概念进行组合,从而创建个性化图像,而无需像遮罩(masks)之类的额外监督。与现有的个性化技术相比,TokenVerse 展现了显著的优势,提供了更大的灵活性和控制力,促进了个性化内容创作和叙事的实现。
论文通过定量和定性结果展示了 TokenVerse 框架的有效性,证明了其在个性化生成和故事创作中的潜力。
原文链接:https://arxiv.org/abs/2501.12224