Seventy3

【第184期】Diffusion Planner:基于Transformer的闭环自动驾驶算法


Listen Later

Seventy3:借助NotebookLM的能力进行论文解读,专注人工智能、大模型、机器人算法方向,让大家跟着AI一起进步。

进群添加小助手微信:seventy3_podcast

备注:小宇宙

今天的主题是:Diffusion-Based Planning for Autonomous Driving with Flexible Guidance

Summary

The provided research paper introduces Diffusion Planner, a novel method for autonomous driving that utilizes diffusion models to achieve human-like planning in complex environments. This approach jointly models motion prediction and planning without relying on traditional rule-based refinements, addressing limitations of imitation learning. By learning the gradient of a trajectory score function and using a flexible classifier guidance mechanism, Diffusion Planner can adapt its driving behavior for safety and other preferences. Evaluations on public and newly collected datasets demonstrate that this method achieves state-of-the-art closed-loop performance with strong transferability across different driving styles.

该研究提出了 Diffusion Planner,一种新型自动驾驶规划方法,利用扩散模型(diffusion models)在复杂环境中实现类人规划。该方法联合建模运动预测与规划,无需依赖传统的基于规则的优化,从而克服了模仿学习的局限性。通过学习轨迹评分函数的梯度,并引入灵活的分类器引导机制,Diffusion Planner 能够根据安全性及其他偏好自适应调整驾驶行为。实验结果表明,该方法在公开数据集和新采集数据集上的闭环性能达到最先进水平,并展现出跨不同驾驶风格的强泛化能力

原文链接:https://arxiv.org/abs/2501.15564

...more
View all episodesView all episodes
Download on the App Store

Seventy3By 任雨山