Seventy3

【第208期】YOLOv12:注意力中心的实时目标检测模型


Listen Later

Seventy3:借助NotebookLM的能力进行论文解读,专注人工智能、大模型、机器人算法方向,让大家跟着AI一起进步。

进群添加小助手微信:seventy3_podcast

备注:小宇宙

今天的主题是:YOLOv12: Attention-Centric Real-Time Object Detectors

Summary

Researchers introduce YOLOv12, an attention-centric framework for real-time object detection, overcoming the typical speed limitations of attention mechanisms compared to CNNs. This new architecture incorporates an area attention module and residual efficient layer aggregation networks (R-ELAN) to enhance both speed and accuracy. Experiments demonstrate that YOLOv12 surpasses existing state-of-the-art detectors across various model scales, achieving improved accuracy with competitive or faster inference times. The work challenges the reliance on CNNs within the YOLO series, showcasing the potential of attention mechanisms for efficient object detection.

研究人员提出了 YOLOv12,这是一种以注意力机制为核心的实时目标检测框架,突破了注意力机制在速度上相较于卷积神经网络(CNN)常见的性能瓶颈。该新架构引入了区域注意力模块(Area Attention Module)和残差高效层聚合网络(R-ELAN),在提升检测精度的同时也保证了推理速度。实验结果表明,YOLOv12 在多个模型规模下均超越了现有的最先进检测器,在保持或提升推理速度的同时,取得了更高的准确率。这项工作挑战了YOLO系列对CNN的依赖,展示了注意力机制在高效目标检测中的潜力。

原文链接:https://arxiv.org/abs/2502.12524

...more
View all episodesView all episodes
Download on the App Store

Seventy3By 任雨山