Seventy3

【第93期】TARFLOW:一种基于 Transformer 的正则化流


Listen Later

Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。

今天的主题是:Normalizing Flows are Capable Generative Models

Summary

This research paper introduces TARFLOW, a novel Transformer-based Normalizing Flow (NF) architecture for generative modeling of images. TARFLOW significantly improves upon previous NF models by achieving state-of-the-art results in likelihood estimation and generating high-quality samples comparable to diffusion models. Key advancements include a more scalable architecture, Gaussian noise augmentation during training, post-training denoising, and a guidance method for both conditional and unconditional generation. The authors demonstrate superior performance across multiple image datasets, showcasing TARFLOW's potential as a powerful generative modeling technique. The accompanying code is publicly available.

这篇研究论文介绍了 TARFLOW,一种基于 Transformer 的正则化流(Normalizing Flow, NF)架构,用于图像的生成建模。TARFLOW 在前述 NF 模型的基础上取得了显著的改进,在似然估计方面达到了最先进的结果,并生成了与扩散模型相媲美的高质量样本。关键进展包括:更具可扩展性的架构、训练过程中的高斯噪声增强、训练后去噪方法,以及一种用于条件生成和无条件生成的引导方法。作者在多个图像数据集上展示了 TARFLOW 的卓越表现,展现了其作为一种强大生成建模技术的潜力。相关代码已公开。

原文链接:https://arxiv.org/abs/2412.06329

...more
View all episodesView all episodes
Download on the App Store

Seventy3By 任雨山