
Sign up to save your podcasts
Or
Innovation is rampant in orthodontics—to the point that we’re seeing innovation within innovation. Take 3D printing, for example. The 3D printer alone—just the printer itself—has been revolutionary. It has allowed the orthodontic practice to take control and fabricate aligners in-office, on their own schedule. But it wasn’t the 3D printer alone that facilitated this. Along the way, additional innovations were needed—chief among them the thermoforming plastic material. And now, these materials are further evolving with a new material that allows for direct 3D-printed aligners. Orthodontic Products Chief Editor Alison Werner spoke to Ki Beom Kim, DDS, PhD, the Dr Lysle Johnston Endowed Chair in Orthodontics, and the program director in the orthodontic department at the Center for Advanced Dental Education at Saint Louis University, on a recent podcast episode about a new material that allows for direct 3D-printed aligners.
Kim and his colleagues have spent the last 3 years testing the Direct Aligner photopolymer material from the South Korean 3D printing material company Graphy. Their findings were recently published in Progress in Orthodontics. The team found that controlling material dimensions, structure, and properties of aligners directly—compared to thermoforming plastic sheets—has the potential to make the process of tooth movement faster, less wasteful, and more precise.
For Kim, the shape memory polymer used to make the material is very interesting.
Now when it comes to forces, Kim shares he has been able to apply bigger activations per aligner, thus saving time in treatment and decreasing the number of aligners over the course of treatment. With traditional thermoforming plastics, Kim points out, something like a .5 mm activation per aligner can create a force level that causes the patient too much discomfort and even pain. But with this material, Kim can do that.
In this episode, Kim also talks about the hardware requirements, including 3D printer compatibility with the material needed, and the need for a specific type of curing machine. He also talks about the staging software needed to plan cases using direct 3D-printed aligners. What’s more, he talks about retention and his plans to test an on-site retainer-bending machine from YOAT, a medical technology manufacturer based in Seattle. OP
3.7
33 ratings
Innovation is rampant in orthodontics—to the point that we’re seeing innovation within innovation. Take 3D printing, for example. The 3D printer alone—just the printer itself—has been revolutionary. It has allowed the orthodontic practice to take control and fabricate aligners in-office, on their own schedule. But it wasn’t the 3D printer alone that facilitated this. Along the way, additional innovations were needed—chief among them the thermoforming plastic material. And now, these materials are further evolving with a new material that allows for direct 3D-printed aligners. Orthodontic Products Chief Editor Alison Werner spoke to Ki Beom Kim, DDS, PhD, the Dr Lysle Johnston Endowed Chair in Orthodontics, and the program director in the orthodontic department at the Center for Advanced Dental Education at Saint Louis University, on a recent podcast episode about a new material that allows for direct 3D-printed aligners.
Kim and his colleagues have spent the last 3 years testing the Direct Aligner photopolymer material from the South Korean 3D printing material company Graphy. Their findings were recently published in Progress in Orthodontics. The team found that controlling material dimensions, structure, and properties of aligners directly—compared to thermoforming plastic sheets—has the potential to make the process of tooth movement faster, less wasteful, and more precise.
For Kim, the shape memory polymer used to make the material is very interesting.
Now when it comes to forces, Kim shares he has been able to apply bigger activations per aligner, thus saving time in treatment and decreasing the number of aligners over the course of treatment. With traditional thermoforming plastics, Kim points out, something like a .5 mm activation per aligner can create a force level that causes the patient too much discomfort and even pain. But with this material, Kim can do that.
In this episode, Kim also talks about the hardware requirements, including 3D printer compatibility with the material needed, and the need for a specific type of curing machine. He also talks about the staging software needed to plan cases using direct 3D-printed aligners. What’s more, he talks about retention and his plans to test an on-site retainer-bending machine from YOAT, a medical technology manufacturer based in Seattle. OP