Deep Dive in Research

EDINET-Bench: LLMs on Japanese Financial Tasks


Listen Later

The article introduces EDINET-Bench, a novel open-source Japanese financial benchmark designed to evaluate Large Language Models (LLMs) on complex financial tasks. This benchmark addresses the scarcity of challenging Japanese financial datasets for LLM evaluation, crucial for tasks like accounting fraud detectionearnings forecasting, and industry prediction. The EDINET-Bench dataset is automatically compiled from ten years of Japanese annual reports available through the Electronic Disclosure for Investors’ NETwork (EDINET). Initial evaluations indicate that even state-of-the-art LLMs perform only marginally better than logistic regression in some complex financial tasks, highlighting the need for domain-specific adaptation and further research. The project makes its datasetbenchmark construction code, and evaluation code publicly available to foster advancements in LLM applications within the financial sector.

...more
View all episodesView all episodes
Download on the App Store

Deep Dive in ResearchBy NotebookLM