
Sign up to save your podcasts
Or


In this episode, Noz Urbina interviews Ilya Venger, Data and AI Product Leader at Microsoft, to deliver a masterclass in practical AI implementation for business leaders. Ilya addresses the trillion-dollar question facing every executive: Should we build our own AI solution, buy off-the-shelf, or wait for the technology to mature? His answer: it depends on understanding your specific business problems, not chasing shiny technology. Key Takeaways The 80% Solution: Ilya reveals that AI systems work correctly about 80% of the time. Success isn’t about perfecting that last 20% through expensive fine-tuning – it’s about redesigning processes to work with AI’s probabilistic nature. As Noz puts it, “If you create a workflow with zero tolerance for error, you’ve designed a bad process.” The Fine-Tuning Trap: Ilya shares cautionary tales of companies spending millions to fine-tune models for specific problems (like the “six finger problem” in image generation), only to watch base models solve these issues within 18 months. His stark example: a model fine-tuned to be cheaper than GPT-4 became pointless when GPT-4’s price dropped tenfold. Data Reality Check: Both speakers agree that most organizations have “data heaps” – disconnected silos without understanding or metadata. Ilya’s metaphor: “You’ve got gold nuggets in a dark room. You need to turn on the lights first.” Organisations must understand their data landscape before implementing any AI solution. The Build vs. Buy Decision Framework: Build (Fine-tune): Only when you have extremely specific tasks with proprietary data (like recognizing manufacturing equipment or crop diseases) Buy: For most use cases, using off-the-shelf models with good system prompts and workflow design Wait: When your problem might be solved by next quarter’s model improvements What you’ll learn
By Omnichannel by OmnichannelX5
22 ratings
In this episode, Noz Urbina interviews Ilya Venger, Data and AI Product Leader at Microsoft, to deliver a masterclass in practical AI implementation for business leaders. Ilya addresses the trillion-dollar question facing every executive: Should we build our own AI solution, buy off-the-shelf, or wait for the technology to mature? His answer: it depends on understanding your specific business problems, not chasing shiny technology. Key Takeaways The 80% Solution: Ilya reveals that AI systems work correctly about 80% of the time. Success isn’t about perfecting that last 20% through expensive fine-tuning – it’s about redesigning processes to work with AI’s probabilistic nature. As Noz puts it, “If you create a workflow with zero tolerance for error, you’ve designed a bad process.” The Fine-Tuning Trap: Ilya shares cautionary tales of companies spending millions to fine-tune models for specific problems (like the “six finger problem” in image generation), only to watch base models solve these issues within 18 months. His stark example: a model fine-tuned to be cheaper than GPT-4 became pointless when GPT-4’s price dropped tenfold. Data Reality Check: Both speakers agree that most organizations have “data heaps” – disconnected silos without understanding or metadata. Ilya’s metaphor: “You’ve got gold nuggets in a dark room. You need to turn on the lights first.” Organisations must understand their data landscape before implementing any AI solution. The Build vs. Buy Decision Framework: Build (Fine-tune): Only when you have extremely specific tasks with proprietary data (like recognizing manufacturing equipment or crop diseases) Buy: For most use cases, using off-the-shelf models with good system prompts and workflow design Wait: When your problem might be solved by next quarter’s model improvements What you’ll learn