RoboPapers

Ep#22: DexWild: Dexterous Human Interactions for In-the-Wild Robot Policies


Listen Later

How can we collect large-scale manipulation data in the real world? DexWild proposes a solution: an easy-to-use wearable that lets operators perform robotic tasks in a wide variety of environments easily. With the added data diversity, this results in robot policies which can operate in a variety of different environments.

Watch the video to learn more!

Abstract:

Large-scale, diverse robot datasets have emerged as a promising path toward enabling dexterous manipulation policies to generalize to novel environments, but acquiring such datasets presents many challenges. While teleoperation provides high-fidelity datasets, its high cost limits its scalability. Instead, what if people could use their own hands, just as they do in everyday life, to collect data? In DexWild, a diverse team of data collectors uses their hands to collect hours of interactions across a multitude of environments and objects. To record this data, we create DexWild-System, a low-cost, mobile, and easy-to-use device. The DexWild learning framework co-trains on both human and robot demonstrations, leading to improved performance compared to training on each dataset individually. This combination results in robust robot policies capable of generalizing to novel environments, tasks, and embodiments with minimal additional robot-specific data. Experimental results demonstrate that DexWild significantly improves performance, achieving a 68.5% success rate in unseen environments-nearly four times higher than policies trained with robot data only-and offering 5.8x better cross-embodiment generalization. Video results, codebases, and instructions at this https URL

Project Page

Original Post on YouTube

Paper on ArXiV



This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit robopapers.substack.com
...more
View all episodesView all episodes
Download on the App Store

RoboPapersBy Chris Paxton and Michael Cho