
Sign up to save your podcasts
Or


Space isn't 'empty' but is often filled with gas and interstellar wind. Gas flows and moves around our universe forming stars, planets and galaxies, but how does it get there? How can you capture the complex motion of interstellar gas? What connects dragonflies with taking pictures of interstellar gas? Strapping a whole bunch of cameras together can help scientists image the faintest of light. Violent eruptions and messy eating by Neutron stars and black holes can help us understand the way interstellar gas moves in space. When a neutron star devours a planet, the remnants and gas flows can tell us a lot about star formation.
By Lagrange PointSpace isn't 'empty' but is often filled with gas and interstellar wind. Gas flows and moves around our universe forming stars, planets and galaxies, but how does it get there? How can you capture the complex motion of interstellar gas? What connects dragonflies with taking pictures of interstellar gas? Strapping a whole bunch of cameras together can help scientists image the faintest of light. Violent eruptions and messy eating by Neutron stars and black holes can help us understand the way interstellar gas moves in space. When a neutron star devours a planet, the remnants and gas flows can tell us a lot about star formation.