Dieudonne

Extension of complete discrete valuation fields (results) #ALNT-LB 1.9.R Chapter 1 Section 9 #Algebraic Number Theory # Lecture note Benois


Listen Later

Let K be a complete discrete valuation field.

Theorem 9.1

Let L/K be a finite separable extension, then

(1) L is (also) a complete discrete valuation field.

(2) O_L coincides with the integral closure of O_K in L.

(3) O_L is a free O_K-module of rank [L:K].

Definition

Let L/K be a finite separable extension of a complete discrete valuation field (hence so is L).

(1) ramification index: pi_K=pi_L^e u; set v_L(pi_L)=1, then e=v_L(pi_K)

(2) residue degree: f=[k_L: k_K].

Theorem 9.2

Let L/K be a finite separable extension of a complete discrete valuation field, then  ef=[L:K].

Proposition 9.3

Let L/K be a finite separable extension of a complete discrete valuation field. Let v_K(pi_K)=v_L(pi_L)=1. Then 

v_L(x)=1/f v_K(N_{L/K}(x)).

Proposition 9.4

Assume K subset L subset M are complete discrete valuation fields, then

f(M/K)=f(M/L)f(L/K)

e(M/K)=e(M/L)e(L/K).  




...more
View all episodesView all episodes
Download on the App Store

DieudonneBy Luc