
Sign up to save your podcasts
Or
Theorem 6.1
(1) ||-||_w1, ... , ||_||_wn are exactly all extensions of ||-||_w to L.
(2) Sum_{i=1}^m[ L_wi : K_v ] = [ L : K ].
Corollary 6.2
For any w|v, we have a map
Hom_{Kv}(Lw, Kv^bar) ---> Hom_K(L, K^bar)
and the following map is a bijection:
U_{w|v} Hom_{Kv}(Lw, Kv^bar) ---> Hom_K(L, K^bar).
Corollary 6.3
N_{L/K}(x)=Prod_{w|v} N_{Lw/Kv}(x).
Tr_{L/K}(x)=Sum_{w|v} Tr_{Lw/Kv}(x).
Corollary 6.4
For any x in L, ||N_{L/K}(x)||_v=Prod_{w|v} ||x||_w^[Lw : Kv].
Theorem 6.1
(1) ||-||_w1, ... , ||_||_wn are exactly all extensions of ||-||_w to L.
(2) Sum_{i=1}^m[ L_wi : K_v ] = [ L : K ].
Corollary 6.2
For any w|v, we have a map
Hom_{Kv}(Lw, Kv^bar) ---> Hom_K(L, K^bar)
and the following map is a bijection:
U_{w|v} Hom_{Kv}(Lw, Kv^bar) ---> Hom_K(L, K^bar).
Corollary 6.3
N_{L/K}(x)=Prod_{w|v} N_{Lw/Kv}(x).
Tr_{L/K}(x)=Sum_{w|v} Tr_{Lw/Kv}(x).
Corollary 6.4
For any x in L, ||N_{L/K}(x)||_v=Prod_{w|v} ||x||_w^[Lw : Kv].