PaperPlayer biorxiv biochemistry

Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation


Listen Later

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2020.09.12.294835v1?rss=1
Authors: Miyazaki, R., Akiyama, Y., Mori, H.
Abstract:
Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the VemP arrest-cancelation. We also identified the conserved Arg-85 residue in VemP as an essential element for the regulated arrest-cancelation of VemP. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.
Copy rights belong to original authors. Visit the link for more info
...more
View all episodesView all episodes
Download on the App Store

PaperPlayer biorxiv biochemistryBy Multimodal LLC