Build Wiz AI Show

Fine-Tuning LLMs: A Deep Dive into Alternatives


Listen Later

Large language model (LLM) fine-tuning is a key technique for adapting pre-trained AI models to specific tasks or domains. Fine-tuning involves training an existing model on a new, task-specific dataset, updating its parameters to improve performance. This process balances improving capabilities with managing potential drawbacks like robustness degradation and catastrophic forgetting. Alternatives to fine-tuning, such as prompt engineering and Retrieval-Augmented Generation (RAG), offer different ways to customize LLMs, each with its own set of trade-offs regarding complexity, data integration, and privacy. Parameter-efficient fine-tuning (PEFT) methods like LoRA are emerging as promising approaches, offering efficiency and flexibility. The selection of a specific model and method should align with strategic goals, available resources, and the desired return on investment.

...more
View all episodesView all episodes
Download on the App Store

Build Wiz AI ShowBy Build Wiz AI