
Sign up to save your podcasts
Or


W tym odcinku Data Zen AI Podcast zastanawiamy się nad jednym z kluczowych pytań w świecie AI: czy duży model językowy (LLM) powinien działać lokalnie, czy w chmurze?
Omówimy zalety i wady obu podejść — od prywatności i wydajności po koszty i skalowalność. Dowiesz się, jak deweloperzy i firmy korzystają z lokalnych narzędzi, takich jak Ollama czy LM Studio, oraz usług w chmurze, takich jak OpenAI, Anthropic czy Google.
Idealny odcinek dla każdego, kto chce świadomie wybrać najlepsze środowisko dla swojego projektu AI.
By Data ZenW tym odcinku Data Zen AI Podcast zastanawiamy się nad jednym z kluczowych pytań w świecie AI: czy duży model językowy (LLM) powinien działać lokalnie, czy w chmurze?
Omówimy zalety i wady obu podejść — od prywatności i wydajności po koszty i skalowalność. Dowiesz się, jak deweloperzy i firmy korzystają z lokalnych narzędzi, takich jak Ollama czy LM Studio, oraz usług w chmurze, takich jak OpenAI, Anthropic czy Google.
Idealny odcinek dla każdego, kto chce świadomie wybrać najlepsze środowisko dla swojego projektu AI.