
Sign up to save your podcasts
Or
D. Carlero et al, ACS Nano 2024, 18, 30, 19518–19527
Researchers from Kanazawa University's NanoLSI, IMDEA Nanoscience, and CNB-CSIC studied influenza A replication using high-speed atomic force microscopy. They observed that recombinant ribonucleoprotein complexes (rRNPs) can undergo multiple transcription cycles, with RNA structure stability influencing synthesis rates. Their findings offer new insights into viral replication mechanisms and RNA synthesis regulation, opening doors for further research on gene expression control.
NanoLSI Podcast website
D. Carlero et al, ACS Nano 2024, 18, 30, 19518–19527
Researchers from Kanazawa University's NanoLSI, IMDEA Nanoscience, and CNB-CSIC studied influenza A replication using high-speed atomic force microscopy. They observed that recombinant ribonucleoprotein complexes (rRNPs) can undergo multiple transcription cycles, with RNA structure stability influencing synthesis rates. Their findings offer new insights into viral replication mechanisms and RNA synthesis regulation, opening doors for further research on gene expression control.
NanoLSI Podcast website