Lang zal je leven

Hoeveel koffie is te veel?


Listen Later

Iedereen drinkt het, maar bijna niemand weet: hoeveel koppen koffie zijn nog gezond?
Tom test het op de harde manier, van een overdosis aan koffie naar cold turkey helemaal geen koffie en dokter Alexander legt uit wat de wetenschap zegt over de ideale dosis.

In deze aflevering bespreken ze:

  • Helpt koffie Ă©cht tegen vermoeidheid?
  • Hoeveel koppen koffie zijn goed voor je, en waarom is de timing belangrijk?
  • Is koffie goed voor afvallen en je hartgezondheid?
  • Droogt het je uit, en klopt het dat het je stresshormoon omhoog jaagt?

Tom test het in de praktijk, Alexander checkt de wetenschap.

🗣️ Waar zoek jij naar steun? Als grootste online therapieplatform ter wereld biedt Betterhelp toegang tot deskundige therapeuten. Luisteraars van deze podcast krijgen 10% korting op de eerste maand via www.betterhelp.com/langzaljeleven 

🎧 Geproduceerd door Tonny Media
👉 Volg ons op Instagram, TikTok en YouTube

Onderzoeken die Alexander heeft gebruik voor deze aflevering: 

  1. Blanchard J, Sawers SJ. The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol. 1983;24(1):93-98. doi:10.1007/bf00613933
  2. Huang ZL, Qu WM, Eguchi N, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8(7):858-859. doi:10.1038/nn1491
  3. Reichert CF, Deboer T, Landolt HP. Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. J Sleep Res. 2022;31(4):e13597. doi:10.1111/jsr.13597
  4. Alasmari F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm J. 2020;28(4):445-451. doi:10.1016/j.jsps.2020.02.005
  5. Tian DD, Natesan S, White JR , Jr, Paine MF. Effects of common CYP1A2 genotypes and other key factors on intraindividual variation in the caffeine metabolic ratio: An exploratory analysis. Clin Transl Sci. 2019;12(1):39-46. doi:10.1111/cts.12598
  6. Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97(3):125-134. doi:10.1111/j.1742-7843.2005.pto_973160.x
  7. Low JJL, Tan BJW, Yi LX, Zhou ZD, Tan EK. Genetic susceptibility to caffeine intake and metabolism: a systematic review. J Transl Med. 2024;22(1):961. doi:10.1186/s12967-024-05737-z
  8. Matthaei J, Tzvetkov MV, Strube J, et al. Heritability of caffeine metabolism: Environmental effects masking genetic effects on CYP1A2 activity but not on NAT2. Clin Pharmacol Ther. 2016;100(6):606-616. doi:10.1002/cpt.444
  9. Parsons WD, Neims AH. Effect of smoking on caffeine clearance. Clin Pharmacol Ther. 1978;24(1):40-45. doi:10.1002/cpt197824140
  10. Gunes A, Ozbey G, Vural EH, et al. Influence of genetic polymorphisms, smoking, gender and age on CYP1A2 activity in a Turkish population. Pharmacogenomics. 2009;10(5):769-778. doi:10.2217/pgs.09.22
  11. Kall MA, Clausen J. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum Exp Toxicol. 1995;14(10):801-807. doi:10.1177/096032719501401004
  12. Vistisen K, Poulsen HE, Loft S. Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine. Carcinogenesis. 1992;13(9):1561-1568. doi:10.1093/carcin/13.9.1561
  13. Abernethy DR, Todd EL. Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur J Clin Pharmacol. 1985;28(4):425-428. doi:10.1007/bf00544361
  14. Gunes A, Dahl ML. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008;9(5):625-637. doi:10.2217/14622416.9.5.625
  15. Lane JD, Steege JF, Rupp SL, Kuhn CM. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol. 1992;43(5):543-546. doi:10.1007/bf02285099
  16. Tracy TS, Venkataramanan R, Glover DD, Caritis SN, National Institute for Child Health and Human Development Network of Maternal-Fetal-Medicine Units. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633-639. doi:10.1016/j.ajog.2004.08.030
  17. Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol. 2008;64(4):381-385. doi:10.1007/s00228-007-0438-6
  18. Fulgoni VL 3rd, Keast DR, Lieberman HR. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr. 2015;101(5):1081-1087. doi:10.3945/ajcn.113.080077
  19. Lorenzo Calvo J, Fei X, DomĂ­nguez R, Pareja-Galeano H. Caffeine and cognitive functions in sports: A systematic review and meta-analysis. Nutrients. 2021;13(3):868. doi:10.3390/nu13030868
  20. McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294-312. doi:10.1016/j.neubiorev.2016.09.001
  21. Wilhelmus MM, Hay JL, Zuiker RG, et al. Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol. 2017;31(2):222-232. doi:10.1177/0269881116668593
  22. Liu C, Wang L, Zhang C, et al. Caffeine intake and anxiety: a meta-analysis. Front Psychol. 2024;15:1270246. doi:10.3389/fpsyg.2024.1270246
  23. Březinová V. Effect of caffeine on sleep: EEG study in late middle age people. Br J Clin Pharmacol. 1974;1(3):203-208. doi:10.1111/j.1365-2125.1974.tb00237.x
  24. Gardiner CL, Weakley J, Burke LM, et al. Dose and timing effects of caffeine on subsequent sleep: A randomised clinical crossover trial. Sleep. Published online October 8, 2024. doi:10.1093/sleep/zsae230
  25. Quiquempoix M, Drogou C, Erblang M, et al. Relationship between habitual caffeine consumption, attentional performance, and individual alpha frequency during total sleep deprivation. Int J Environ Res Public Health. 2023;20(6). doi:10.3390/ijerph20064971
  26. Glaister M, Gissane C. Caffeine and physiological responses to submaximal exercise: A meta-analysis. Int J Sports Physiol Perform. 2018;13(4):402-411. doi:10.1123/ijspp.2017-0312
  27. Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):69-78. doi:10.1111/j.1600-0838.2005.00445.x
  28. Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115-120. doi:10.1080/02640414.2011.632431
  29. Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: The effect of acute caffeine ingestion on endurance performance: A systematic review and meta-analysis. Sports Med. 2018;48(10):2425-2441. doi:10.1007/s40279-018-0967-4
  30. Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1. doi:10.1186/s12970-020-00383-4
  31. Wang Z, Qiu B, Gao J, Del Coso J. Effects of caffeine intake on endurance running performance and time to exhaustion: A systematic review and meta-analysis. Nutrients. 2022;15(1):148. doi:10.3390/nu15010148
  32. Carvalho A, Marticorena FM, Grecco BH, Barreto G, Saunders B. Can I have my coffee and drink it? A systematic review and meta-analysis to determine whether habitual caffeine consumption affects the ergogenic effect of caffeine. Sports Med. 2022;52(9):2209-2220. doi:10.1007/s40279-022-01685-0
  33. Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS One. 2019;14(1):e0210275. doi:10.1371/journal.pone.0210275
  34. Pickering C, Kiely J. What should we do about habitual caffeine use in athletes? Sports Med. 2019;49(6):833-842. doi:10.1007/s40279-018-0980-7
  35. Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):1375-1387. doi:10.1249/MSS.0b013e3181cabbd8
  36. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. doi:10.1186/s12970-018-0216-0
  37. Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681-688. doi:10.1136/bjsports-2018-100278
  38. Ferreira TT, da Silva JVF, Bueno NB. Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: a systematic review and meta-analyses. Crit Rev Food Sci Nutr. 2021;61(15):2587-2600. doi:10.1080/10408398.2020.1781051
  39. Lopes-Silva JP, Choo HC, Franchini E, Abbiss CR. Isolated ingestion of caffeine and sodium bicarbonate on repeated sprint performance: A systematic review and meta-analysis. J Sci Med Sport. 2019;22(8):962-972. doi:10.1016/j.jsams.2019.03.007
  40. Collegiate and Professional Sports Dietitians Association. Caffeine and Athletic Performance. National Collegiate Athletic Association; 2014.
  41. Koot P, Deurenberg P. Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Ann Nutr Metab. 1995;39(3):135-142. doi:10.1159/000177854
  42. Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jéquier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33(5):989-997. doi:10.1093/ajcn/33.5.989
  43. Acheson KJ, Gremaud G, Meirim I, et al. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr. 2004;79(1):40-46. doi:10.1093/ajcn/79.1.40
  44. Gavrieli A, Karfopoulou E, Kardatou E, et al. Effect of different amounts of coffee on dietary intake and appetite of normal-weight and overweight/obese individuals. Obesity (Silver Spring). 2013;21(6):1127-1132. doi:10.1002/oby.20190
  45. Tabrizi R, Saneei P, Lankarani KB, et al. The effects of caffeine intake on weight loss: a systematic review and dos-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59(16):2688-2696. doi:10.1080/10408398.2018.1507996
  46. Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr. 2010;91(1):73-81. doi:10.3945/ajcn.2009.28157
  47. Hursel R, Westerterp-Plantenga MS. Green tea catechin plus caffeine supplementation to a high-protein diet has no additional effect on body weight maintenance after weight loss. Am J Clin Nutr. 2009;89(3):822-830. doi:10.3945/ajcn.2008.27043
  48. Dulloo AG, Geissler CA, Horton T, Collins A, Miller DS. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr. 1989;49(1):44-50. doi:10.1093/ajcn/49.1.44
  49. Panchal SK, Wong WY, Kauter K, Ward LC, Brown L. Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition. 2012;28(10):1055-1062. doi:10.1016/j.nut.2012.02.013
  50. Martins BC, Soares AC, Martins FF, et al. Coffee consumption prevents obesity-related comorbidities and attenuates brown adipose tissue whitening in high-fat diet-fed mice. J Nutr Biochem. 2023;117(109336):109336. doi:10.1016/j.jnutbio.2023.109336
  51. Whitehead N, White H. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. J Hum Nutr Diet. 2013;26(2):111-125. doi:10.1111/jhn.12033
  52. Shi X, Xue W, Liang S, Zhao J, Zhang X. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: a systematic review and meta-analysis. Nutr J. 2016;15(1):103. doi:10.1186/s12937-016-0220-7
  53. van Dam RM, Pasman WJ, Verhoef P. Effects of coffee consumption on fasting blood glucose and insulin concentrations: randomized controlled trials in healthy volunteers. Diabetes Care. 2004;27(12):2990-2992. doi:10.2337/diacare.27.12.2990
  54. Moon SM, Joo MJ, Lee YS, Kim MG. Effects of coffee consumption on insulin resistance and sensitivity: A meta-analysis. Nutrients. 2021;13(11):3976. doi:10.3390/nu13113976
  55. Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53(1):25-38. doi:10.1007/s00394-013-0603-x
  56. Mirmiran P, Carlström M, Bahadoran Z, Azizi F. Long-term effects of coffee and caffeine intake on the risk of pre-diabetes and type 2 diabetes: Findings from a population with low coffee consumption. Nutr Metab Cardiovasc Dis. 2018;28(12):1261-1266. doi:10.1016/j.numecd.2018.09.001
  57. Alshahrani SH, Atia YA, Badir RA, et al. Dietary caffeine intake is associated with favorable metabolic profile among apparently healthy overweight and obese individuals. BMC Endocr Disord. 2023;23(1):227. doi:10.1186/s12902-023-01477-1
  58. Guarino MP, Ribeiro MJ, Sacramento JF, Conde SV. Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity. Age (Dordr). 2013;35(5):1755-1765. doi:10.1007/s11357-012-9475-x
  59. Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine’s vascular mechanisms of action. Int J Vasc Med. 2010;2010:834060. doi:10.1155/2010/834060
  60. Zuchinali P, Souza GC, Pimentel M, et al. Short-term effects of high-dose caffeine on cardiac arrhythmias in patients with heart failure: A randomized clinical trial. JAMA Intern Med. 2016;176(12):1752-1759. doi:10.1001/jamainternmed.2016.6374
  61. Caldeira D, Martins C, Alves LB, Pereira H, Ferreira JJ, Costa J. Caffeine does not increase the risk of atrial fibrillation: a systematic review and meta-analysis of observational studies. Heart. 2013;99(19):1383-1389. doi:10.1136/heartjnl-2013-303950
  62. Al-Fadhel JA, Al-Sharidi EM, Alashjaee AA, et al. Does excessive caffeine intake increase the risk of atrial fibrillation? A systematic review and meta-analysis of 1176579 subjects. Journal of Advanced Trends in Medical Research. 2024;1(3):870-875. doi:10.4103/atmr.atmr_165_24
  63. Mattioli AV, Farinetti A, Miloro C, Pedrazzi P, Mattioli G. Influence of coffee and caffeine consumption on atrial fibrillation in hypertensive patients. Nutr Metab Cardiovasc Dis. 2011;21(6):412-417. doi:10.1016/j.numecd.2009.11.003
  64. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129(6):643-659. doi:10.1161/CIRCULATIONAHA.113.005925
  65. RodrĂ­guez-Artalejo F, LĂłpez-GarcĂ­a E. Coffee consumption and cardiovascular disease: A condensed review of epidemiological evidence and mechanisms. J Agric Food Chem. 2018;66(21):5257-5263. doi:10.1021/acs.jafc.7b04506
  66. Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, Lopez-Garcia E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr. 2011;94(4):1113-1126. doi:10.3945/ajcn.111.016667
  67. Lebeau PF, Byun JH, Platko K, et al. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun. 2022;13(1):770. doi:10.1038/s41467-022-28240-9
  68. Superko HR, Bortz W Jr, Williams PT, Albers JJ, Wood PD. Caffeinated and decaffeinated coffee effects on plasma lipoprotein cholesterol, apolipoproteins, and lipase activity: a controlled, randomized trial. Am J Clin Nutr. 1991;54(3):599-605. doi:10.1093/ajcn/54.3.599
  69. Cai L, Ma D, Zhang Y, Liu Z, Wang P. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2012;66(8):872-877. doi:10.1038/ejcn.2012.68
  70. Aro A, Tuomilehto J, Kostiainen E, Uusitalo U, Pietinen P. Boiled coffee increases serum low density lipoprotein concentration. Metabolism. 1987;36(11):1027-1030. doi:10.1016/0026-0495(87)90021-7
  71. van Dusseldorp M, Katan MB, van Vliet T, Demacker PN, Stalenhoef AF. Cholesterol-raising factor from boiled coffee does not pass a paper filter. Arterioscler Thromb. 1991;11(3):586-593. doi:10.1161/01.atv.11.3.586
  72. Dong X, Li S, Sun J, Li Y, Zhang D. Association of coffee, decaffeinated coffee and caffeine intake from coffee with cognitive performance in older adults: National Health and Nutrition Examination Survey (NHANES) 2011-2014. Nutrients. 2020;12(3):840. doi:10.3390/nu12030840
  73. van Gelder BM, Buijsse B, Tijhuis M, et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr. 2007;61(2):226-232. doi:10.1038/sj.ejcn.1602495
  74. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16(1):85-91. doi:10.3233/JAD-2009-0920
  75. Barranco Quintana JL, Allam MF, Serrano Del Castillo A, Fernández-Crehuet Navajas R. Alzheimer’s disease and coffee: a quantitative review. Neurol Res. 2007;29(1):91-95. doi:10.1179/174313206X152546
  76. Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis. 2010;20 Suppl 1(s1):S221-S238. doi:10.3233/JAD-2010-091525
  77. Vila-Luna S, Cabrera-Isidoro S, Vila-Luna L, et al. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience. 2012;202:384-395. doi:10.1016/j.neuroscience.2011.11.053
  78. Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative diseases: Can caffeine be a powerful ally to weaken neuroinflammation? Int J Mol Sci. 2022;23(21):12958. doi:10.3390/ijms232112958
  79. Londzin P, Zamora M, Kąkol B, Taborek A, Folwarczna J. Potential of caffeine in Alzheimer’s disease-A review of experimental studies. Nutrients. 2021;13(2):537. doi:10.3390/nu13020537
  80. Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An overview of its beneficial effects in experimental models and clinical trials of Parkinson’s disease. Int J Mol Sci. 2020;21(13):4766. doi:10.3390/ijms21134766
  81. Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16(6):411-420. doi:10.1046/j.1365-277x.2003.00477.x
  82. Killer SC, Blannin AK, Jeukendrup AE. No evidence of dehydration with moderate daily coffee intake: a counterbalanced cross-over study in a free-living population. PLoS One. 2014;9(1):e84154. doi:10.1371/journal.pone.0084154
  83. Yu T, Campbell SC, Stockmann C, et al. Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites. J Clin Pharmacol. 2016;56(5):590-596. doi:10.1002/jcph.632
  84. Jafari A, Naghshi S, Shahinfar H, et al. Relationship between maternal caffeine and coffee intake and pregnancy loss: A grading of recommendations assessment, development, and evaluation-assessed, dose-response meta-analysis of observational studies. Front Nutr. 2022;9:886224. doi:10.3389/fnut.2022.886224
  85. Paula T de MDE, Cardoso LC, Felicioni F, et al. Maternal chronic caffeine intake impairs fertility, placental vascularization and fetal development in mice. Reprod Toxicol. 2023;121(108471):108471. doi:10.1016/j.reprotox.2023.108471
  86. Yadegari M, Khazaei M, Anvari M, Eskandari M. Prenatal caffeine exposure impairs pregnancy in rats. Int J Fertil Steril. 2016;9(4):558-562. doi:10.22074/ijfs.2015.4616
  87. Qian J, Chen Q, Ward SM, Duan E, Zhang Y. Impacts of caffeine during pregnancy. Trends Endocrinol Metab. 2020;31(3):218-227. doi:10.1016/j.tem.2019.11.004







See omnystudio.com/listener for privacy information.

...more
View all episodesView all episodes
Download on the App Store

Lang zal je levenBy Tonny Media