
Sign up to save your podcasts
Or


This paper presents Hogwild! Inference, a parallel LLM inference engine enabling LLMs to collaborate effectively using a shared attention cache, enhancing reasoning and efficiency without fine-tuning.
https://arxiv.org/abs//2504.06261
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper presents Hogwild! Inference, a parallel LLM inference engine enabling LLMs to collaborate effectively using a shared attention cache, enhancing reasoning and efficiency without fine-tuning.
https://arxiv.org/abs//2504.06261
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,929 Listeners

432 Listeners

112,236 Listeners

9,938 Listeners

5,509 Listeners

216 Listeners

49 Listeners

93 Listeners

465 Listeners