
Sign up to save your podcasts
Or
This paper investigates Transformers' ability to learn pseudo-random sequences from linear congruential generators, revealing their capacity for in-context prediction and generalization to unseen moduli through algorithmic structures.
https://arxiv.org/abs//2502.10390
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
5
33 ratings
This paper investigates Transformers' ability to learn pseudo-random sequences from linear congruential generators, revealing their capacity for in-context prediction and generalization to unseen moduli through algorithmic structures.
https://arxiv.org/abs//2502.10390
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
698 Listeners
197 Listeners
288 Listeners
77 Listeners
448 Listeners