Pods of Science | Episode 7 | How to Stay Safe from Biothreats JW: Welcome. I’m your host, Jess Wisse. Today I want to share something a little different with you.Let me introduce you to my friend Nick Hennen. He’ll be co-hosting of Pods of Science for us today. This episode was recorded live at the 2020 AAAS meeting. Take it away, Nick.NH: I’m Nick Hennen, Media Relations Advisor for the Pacific Northwest National Laboratory. And I’m here today with Katrina Waters who represents the Biological Division of our laboratory and Kristin Omberg, representing Chemical and Biosignatures Science at PNNL. Today we’ll talk about how increasing globalization is fueling the spread of novel natural biological threats, and advances in biotechnology that could be used to engineer new threats are constantly emerging. Frameworks for assessing unknown biological agents can enable rapid risk profiling and mitigation. This includes applying novel data analysis methods to host-pathogen interaction data to help predict, at early exposure times, whether a patient can be expected to recover from a disease such as Ebola without major interventions.Please introduce yourself and describe what you do at PNNL and why you do it.KW: Hi. So I’m Katrina Waters. I’m a Biochemist and Laboratory Fellow at PNNL. I manage the basic science organization for biology at the lab and work as a researcher in the area of infectious disease and public health. So the reason that I do it is that I get to work with really awesome people who contribute in a lot of different ways and it’s just been a lot of fun. KO: I’m Kristin Omberg. I am the manager of the Chemical and Biological Signatures Group at PNNL which is in the National Security Directorate. I’m a chemist by training and in 1999 I was doing a post-doc at Los Alamos National Laboratory, which is a sister laboratory. And my post-doc didn’t go very well so I started looking for jobs and I got a couple of offers. One was in accelerator production of Tritium and one was in biothreats—so, looking at preparing a system to detect a biological threat in the future. And I talked to my father who happens to be a Nuclear Engineer at PNNL and he said, “I feel kind of good about that counter terrorism stuff.” So I took the job and I started the job in December of 2000. NH: Oh, wow. That’s wonderful. KO: And since then, the 2001 anthrax attacks on the United States, it’s just been a constant sprint. NH: Thanks, Dad.KO: Yeah, thanks, Dad. NH: Tell us briefly about the nature of biothreats and what does that word mean?KO: That is a really interesting question because the way we use biothreat has actually changed in all of our lifetimes. A lot of people don’t realize that up until 1969, the United States had a bioweapons program. So they weaponized Bacillus anthracis, Yersinia pestis and other human pathogens for use in war. The former Soviet Union also had a biological weapons program and they weaponized many of the same pathogens. So at that time biothreat was used to describe a deliberate act of war by a state program using a weaponized pathogen. In 1975, the Biological Weapons Convention came into force and we became less concerned about a state program, both the Soviet Union and the United States ratified that convention. In the 1990s though, we started becoming concerned about terrorist groups. We started worrying about terrorist groups overseas who started using biological agents, and then we saw that in 2001. So we started being concerned about the biothreat by a state actor, terrorist, or a lone actor. But since 2001, we’ve so many outbreaks of diseases that are zoonotic diseases that jump from animals to humans. We’ve had avian influenza, we’ve seen a couple of rounds of Ebola, SARS, MERS and the current coronavirus. And they’ve all demonstrated that they can really be equally devastating in a globalized world. So, in the last decade we’ve started to worry about emerging disease, as well as the health of other