PaperPlayer biorxiv biochemistry

Impairment in O-acetylserine-(thiol) lyase A and B, but not C, confers higher selenate sensitivity and uncovers role for A, B and C as L-Cys and L-SeCys desulfhydrases in Arabidopsis


Listen Later

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2020.09.16.300020v1?rss=1
Authors: Sagi, M., Kurmanbayeva, A., Bekturova, A., Soltabayeva, A., Srivastava, S., Oshanova, D., Nurbekova, Z.
Abstract:
The role of the cytosolic O-acetylserine-(thiol) lyase A (OASTLA), chloroplastic OASTLB and mitochondrion OASTLC in plant resistance/sensitivity to selenate was studied in Arabidopsis plants. Impairment in OASTLA and B resulted in reduced biomass, chlorophyll and soluble protein levels compared with impaired OASTL C and Wild-Type treated with selenate. The lower organic-Se and protein-Se levels followed by decreased organic-S, S in proteins and total glutathione in oastlA and oastlB compared to Wild-Type and oastlC are indicative that Se accumulation is not the main cause for the stress symptoms, but rather the interference of Se with the S-reduction pathway. The increase in sulfite oxidase, adenosine 5'-phosphosulfate reductase, sulfite reductase and OASTL activity levels, followed by enhanced sulfite and sulfide, indicate a futile anabolic S-starvation response to selenate-induced organic-S catabolism in oastlA and oastlB compared to Wild-Type and oastlC. Additionally, the catabolic pathway of L-cysteine degradation was enhanced by selenate, and similar to L-cysteine producing activity, oastlA and B exhibited a significant decrease in L-cysteine desulfhydrase (DES) activity, compared with WT, indicating a major role of OASTLs in L-cysteine degradation. This notion was further evidenced by sulfide dependent DES in-gel activity, immunoblotting, immunoprecipitation with specific antibodies and identification of unique peptides in activity bands generated by OASTLA, B and C. Similar responses of the OASTLs in Seleno-Cysteine degradation was demonstrated in selenate stressed plants. Notably, no L-cysteine and L-Seleno-Cysteine DES activity bands but those related to OASTLs were evident. These results indicate the significance of OASTLs in degrading L-cysteine and L-SelenoCysteine in Arabidopsis.
Copy rights belong to original authors. Visit the link for more info
...more
View all episodesView all episodes
Download on the App Store

PaperPlayer biorxiv biochemistryBy Multimodal LLC