Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2020.07.23.218503v1?rss=1
Authors: Gryder, B., Banerjee, D., Bagchi, S., Liu, Z., Chen, H.-C., Xu, M., Sun, M., Vaksman, Z., Diskin, S. J., Khan, J., Thiele, C.
Abstract:
Temporal regulation of super-enhancer (SE) driven lineage specific transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify critical SEs driving TF regulators of NB, we utilized NB cells in which all-trans retinoic acid (ATRA) induces growth arrest and differentiation. H3K27ac ChIP-seq paired with RNA-seq over a time course of ATRA treatment revealed SEs moving in a coordinated manner with four distinct temporal patterns (clusters). SEs that decreased with ATRA linked to 24 TFs involved in stem cell development/specialization (MYCN, GATA3, SOX11) along with LMO1, a transcriptional coregulator and oncogene identified via a genome-wide association study (GWAS) of NB. H3K27ac levels and GATA3 binding at the NB-associated rs2168101 site of the LMO1 SE were reduced with ATRA treatment, resulting in 1.46 fold decreased LMO1 expression. The SOX11 SE was lost coincident with a 50% decrease in mRNA after 8 days of ATRA treatment. CRISPR-Cas9 screening and siRNA inhibition showed a dependency on SOX11 for cell growth in NB cell lines. Silencing of the SOX11 SE using dCAS9-KRAB targeted guides caused a 40% decrease in SOX11 mRNA and inhibited cell growth. Three other TF SE clusters had sequential waves of activation at 2, 4 and 8 days of ATRA treatment and involved TFs regulating neural development (GATA2 and SOX4). Silencing of the gained SOX4 SE using dCAS9-KRAB targeting, caused a 50% decrease in SOX4 expression and attenuated expression of ATRA-induced differentiation genes. Our study has identified candidate oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.
Copy rights belong to original authors. Visit the link for more info