Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: A Friendly Face (Another Failure Story), published by Karl von Wendt on June 20, 2023 on LessWrong.
The perfect virtual assistant
The year is 2026 and the race for human-level artificial general intelligence (AGI) draws to a close. One of the leading AI companies, MegaAI, committed the last year and a half to training a new large language model (LLM). They employ advanced algorithms that use the available compute more efficiently than earlier models. A comprehensive range of tests establish that the model surpasses the average human in all conventionally accepted intelligence benchmarks, and exceeds expert level in most of them.
In contrast to earlier LLMs, the new AI is not designed to be a mere question-answering tool. Under mounting pressure from the open-source community and their efforts to develop an agentic AGI capable of acting in the real world, MegaAI decides to imbue their new model with a specific purpose: to provide universal, helpful assistance that improves the quality and ease of life for all. They name this assistant "Friendlyface".
To improve upon the assistant's functionality, they endow it with limited agentic capabilities. Friendlyface has a complex, detailed world model, can make long-term plans, and has access to certain tools that enable it to achieve objectives in the real world. For example, it can write messages and book flights, but will reliably and consistently ask the user to confirm before executing an action. It can write programs for nearly any purpose imaginable with superhuman ingenuity, but is prohibited from executing them volitionally. Unlike previous generations of LLMs, it is multimodal, communicating with users in text and spoken language, accepting pictures and videos as input, and interacting directly with smart devices and the “internet of things”. The users may also customize Friendlyface's appearance and personality to their liking.
Most importantly, Friendlyface is designed to assume the role of a personalized smart advisor. In a world where users are regularly inundated with a torrent of irrelevant or false information, it is able to successfully discern and present what is important to the user while filtering out fake news, preventing spear phishing attempts, and more. Beyond merely answering questions, it proactively offers users advice on advancing their careers, improving their relationships, maintaining their health, saving money, cultivating new skills, or solving specific problems, like fixing a leaky faucet or filing taxes. It can detect early symptoms of most known diseases and advise users to call a doctor if necessary. Generally, it can predict what users want and need before the users are aware of it themselves.
The developers devise a balanced reward system to train the model. “Any decision the AI makes is evaluated by three independent AIs that we will call 'judges'”, they explain it to the management. “One judge simulates a top human legal expert and decides whether the decision or action the AI intends to pursue would be deemed lawful in a conventional human court. The second judge determines whether it would be considered healthy for the user by a first-rate human doctor or psychologist. The third judge predicts whether the user themself will prefer the decision and would consider it helpful in hindsight. The first two judges exhibit superior performance relative to human experts. Correspondingly, the third judge is able to predict real users' preferences with exceptional accuracy.”
As expected, Friendlyface performs more efficiently the more knowledge it acquires about the user and the more it is enmeshed in their workspace and private life. It is able to listen to conversations as well as observe what the user sees if they wear augmented reality glasses, but these features are not usually needed for...