The Nonlinear Library

LW - Frames in context by Richard Ngo


Listen Later

Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Frames in context, published by Richard Ngo on July 3, 2023 on LessWrong.
In my previous post, I introduced meta-rationality and frames, and described some examples of frames and some of their properties. In this post I’ll outline some of the limitations of existing ways of thinking about cognition, and some of the dynamics that they can’t describe which meta-rationality can. This post (especially the second half) can be seen as a summary of the key ideas from the rest of the sequence; if you find it too dense, feel free to skip it and come back after reading the next five posts. To quickly list my main claims:
Unlike logical propositions, frames can’t be evaluated as discretely true or false.
Unlike Bayesian hypotheses, frames aren’t mutually exclusive, and can overlap with each other. This (along with point #1) means that we can’t define probability distributions of credences over frames.
Unlike in critical rationalism, we evaluate frames (partly) in terms of how true they are (based on their predictions) rather than just whether they’ve been falsified or not.
Unlike Garrabrant traders and Rational Inductive Agents, frames can output any combination of empirical content (e.g. predictions about the world) and normative content (e.g. evaluations of outcomes, or recommendations for how to act).
Unlike model-based policies, policies composed of frames can’t be decomposed into modules with distinct functions, because each frame plays multiple roles.
Unlike in multi-agent RL, frames don’t interact independently with their environment, but instead contribute towards choosing the actions of a single agent.
I’ll now explain these points in more detail. Epistemology typically focuses on propositions which can (at least in principle) be judged true or false. Traditionally, truth and knowledge are both taken as binary criteria: each proposition is either true or false, and we either know which it is or we don’t. Intuitively speaking, though, this doesn’t match very well with our everyday experience. There are many propositions which are kinda true, or which we kinda know: cats are (mostly) carnivorous (I think); Bob is tall(ish, if I’m looking at the right person); America is beautiful (in some ways, by my current tastes).
The most straightforward solution to the problem of uncertainty is to assign credences based on how much evidence we have for each proposition. This is the bayesian approach, which solves a number of “paradoxes” in epistemology. But there’s still the question: what are we assigning credences to, if not to the proposition being discretely true or false? You might think that we can treat propositions which are “kinda true” (aka fuzzily true) as edge cases—but they’re omnipresent not only in everyday life, but also when thinking about more complex topics. Consider a scientific theory like Darwinian evolution. Darwin got many crucial things right, when formulating his theory; but there were also many gaps and mistakes. So applying a binary standard of truth to the theory as a whole is futile: even though some parts of Darwin’s original theory were false or too vague to evaluate, the overall theory was much better than any other in that domain.
The mental models which we often use in our daily lives (e.g. our implicit models of how bicycles work), and all the other examples of frames I listed at the beginning of this post, can also be seen as “kinda but not completely true”. (From now on I’ll use “models” as a broad term which encompasses both scientific theories and informal mental models.)
Not being “completely true” isn’t just a limitation of our current models, but a more fundamental problem. Perhaps we can discover completely true theories in physics, mathematics, or theoretical CS. But in order to describe high-level features of the real world, it’s always ...
...more
View all episodesView all episodes
Download on the App Store

The Nonlinear LibraryBy The Nonlinear Fund

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

8 ratings