The Nonlinear Library

LW - grey goo is unlikely by bhauth


Listen Later

Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: grey goo is unlikely, published by bhauth on April 17, 2023 on LessWrong.
The nanomachinery builds diamondoid bacteria, that replicate with solar power and atmospheric CHON, maybe aggregate into some miniature rockets or jets so they can ride the jetstream to spread across the Earth's atmosphere, get into human bloodstreams and hide, strike on a timer.
Eliezer Yudkowsky
To control these atoms you need some sort of molecular chaperone that can also serve as a catalyst. You need a fairly large group of other atoms arranged in a complex, articulated, three-dimensional way to activate the substrate and bring in the reactant, and massage the two until they react in just the desired way. You need something very much like an enzyme.
Richard Smalley
My understanding is that anyone who can grasp what "orthos wildly attacking the heterodox without reading their stuff and making up positions to attack" looks like, considers that this is what Smalley did with Drexler - made up an unworkable approach and argued against it.
Eliezer Yudkowsky
In this post, I use "nanobots" to mean "self-replicating microscopic machines with some fundamental mechanistic differences from all biological life that make them superior". Various specific differences from biological cells have been proposed. I've organized this post by those proposed differences.
1. localized melting
Most 3d printers melt material to extrude it through a nozzle. Large heat differences can't be maintained on a small scale.
2. rare materials
If a nanobot consists largely of something rare, getting more of that material to replicate is difficult outside controlled environments.
Growth of algae and bacteria is often limited by availability of iron, which is more common than most elements. Iron is the active catalytic site of many enzymes, and is needed by all known life. The growth of something made mostly of iron would be far more limited, and other metals have more limited availability than that.
3. metal surfaces
Melting material isn't feasible per (1), so material must be built up by adding to the surface. Since that's the case, the inside of structures must be chemically the same as what was the exterior.
Metal objects have a protective oxide layer. In an air or water environment, there's no way to add individual (eg) aluminum atoms to a metal surface and end up with metallic aluminum inside; the whole thing will typically be aluminum oxide or hydroxide.
Corrosion is also a proportionately bigger problem for smaller objects. A micrometer-scale metal structure will rapidly corrode, perhaps doing some Ostwald ripening.
4. electric motors
Normal "electric motors" are all electromagnetic motors, typically using ferromagnetic cores for windings. Bigger is better for those, up to at least the point where you can saturate cores.
On a very small scale, it's better to use electrostatic motors, and you can make MEMS electrostatic motors with lithography. (Not just theoretically; people actually do that.) But, per (2) & (3), bulk metals are a problem for a self-replicating system. If you need to have compounds floating around, electrical insulation is also difficult. You also need some way to switch current, and while small semiconductor switches are possible, per (3) building them is difficult.
Instead of electrostatic charge of metal objects, it's better to use ions. Ions could bind to some molecule, and electrostatic forces could cause that to rotate relative to another molecule. Hmm, this is starting to sound rather familiar.
5. inorganic catalysts
Lab chemistry and drug synthesis often use metal catalysts in solution, perhaps with a small ligand. Palladium acetate is used for making drugs, but it's very toxic to humans, because it...catalyzes reactions.
Life requires control of what happens, which means selective catalysis of r...
...more
View all episodesView all episodes
Download on the App Store

The Nonlinear LibraryBy The Nonlinear Fund

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

8 ratings