The Nonlinear Library

LW - High Status Eschews Quantification of Performance by niplav


Listen Later

Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: High Status Eschews Quantification of Performance, published by niplav on March 19, 2023 on LessWrong.
In a recent episode of The Filan
Cabinet, Oliver Habryka elaborated on a very interesting social pattern: If you have a community with high status people, and try to introduce clearer metrics of performance into that community, high status individuals in the community will strongly resist those metrics because they have an asymmetric downside: If they perform well on the metric, they stay in their position, but if they perform poorly, they might lose status. Since they are at least a little bit unsure about their performance on the metric relative to others, they can only lose.
Daniel Filan: So let's go back to what you think on your bad days. So you mentioned that you had this sense that lots of things in the world were, I don't know, trying to distract you from things that are true or important. And that LessWrong did that somewhat less.
Oliver Habryka: Yeah.
Daniel Filan: Can you kind of flesh that out? What kinds of things are you thinking of?
Oliver Habryka: I mean, the central dimension that I would often think about here is reputation management. As an example, the medical profession, which, you know, generally has the primary job of helping you with your medical problems and trying to heal you of diseases and various other things, also, at the same time, seems to have a very strong norm of mutual reputation protection. Where, if you try to run a study trying to figure out which doctors in the hospital are better or worse than other doctors in the hospital, quite quickly, the hospital will close its ranks and be like, “Sorry, we cannot gather data on [which doctors are better than the other doctors in this hospital].” Because that would, like, threaten the reputation arrangement we have. This would introduce additional data that might cause some of us to be judged and some others of us to not be judged.
And my sense is the way that usually looks like from the inside is an actual intentional blinding to performance metrics in order to both maintain a sense of social peace, and often the case because... A very common pattern here [is] something like, you have a status hierarchy within a community or a local institution like a hospital. And generally, that status hierarchy, because of the way it works, has leadership of the status hierarchy be opposed to all changes to the status hierarchy. Because the current leadership is at the top of the status hierarchy, and so almost anything that we introduce into the system that involves changes to that hierarchy is a threat, and there isn't much to be gained, [at least in] the zero-sum status conflict that is present.
And so my sense is, when you try to run these studies about comparative doctor performance, what happens is more that there's an existing status hierarchy, and lots of people feel a sense of uneasiness and a sense of wanting to protect the status quo, and therefore they push back on gathering relevant data here. And from the inside this often looks like an aversion to trying to understand what are actually the things that cause different doctors to be better than other doctors. Which is crazy, if you're, like, what is the primary job of a good medical institution and a good medical profession, it would be figuring out what makes people be better doctors and worse doctors. But [there are] all of the social dynamics that tend to be present in lots of different institutions that make it so that looking at relative performance [metrics] becomes a quite taboo topic and a topic that is quite scary.
So that's one way [in which] I think many places try to actively... Many groups of people, when they try to orient and gather around a certain purpose, actually [have a harder time] or get blinded or in some sense get...
...more
View all episodesView all episodes
Download on the App Store

The Nonlinear LibraryBy The Nonlinear Fund

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

8 ratings