The Nonlinear Library

LW - The basic reasons I expect AGI ruin by Rob Bensinger


Listen Later

Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: The basic reasons I expect AGI ruin, published by Rob Bensinger on April 18, 2023 on LessWrong.
I've been citing AGI Ruin: A List of Lethalities to explain why the situation with AI looks lethally dangerous to me. But that post is relatively long, and emphasizes specific open technical problems over "the basics".
Here are 10 things I'd focus on if I were giving "the basics" on why I'm so worried:
1. General intelligence is very powerful, and once we can build it at all, STEM-capable artificial general intelligence (AGI) is likely to vastly outperform human intelligence immediately (or very quickly).
When I say "general intelligence", I'm usually thinking about "whatever it is that lets human brains do astrophysics, category theory, etc. even though our brains evolved under literally zero selection pressure to solve astrophysics or category theory problems".
It's possible that we should already be thinking of GPT-4 as "AGI" on some definitions, so to be clear about the threshold of generality I have in mind, I'll specifically talk about "STEM-level AGI", though I expect such systems to be good at non-STEM tasks too.
Human brains aren't perfectly general, and not all narrow AI systems or animals are equally narrow. (E.g., AlphaZero is more general than AlphaGo.) But it sure is interesting that humans evolved cognitive abilities that unlock all of these sciences at once, with zero evolutionary fine-tuning of the brain aimed at equipping us for any of those sciences. Evolution just stumbled into a solution to other problems, that happened to generalize to millions of wildly novel tasks.
More concretely:
AlphaGo is a very impressive reasoner, but its hypothesis space is limited to sequences of Go board states rather than sequences of states of the physical universe. Efficiently reasoning about the physical universe requires solving at least some problems that are different in kind from what AlphaGo solves.
These problems might be solved by the STEM AGI's programmer, and/or solved by the algorithm that finds the AGI in program-space; and some such problems may be solved by the AGI itself in the course of refining its thinking.
Some examples of abilities I expect humans to only automate once we've built STEM-level AGI (if ever):
The ability to perform open-heart surgery with a high success rate, in a messy non-standardized ordinary surgical environment.
The ability to match smart human performance in a specific hard science field, across all the scientific work humans do in that field.
In principle, I suspect you could build a narrow system that is good at those tasks while lacking the basic mental machinery required to do par-human reasoning about all the hard sciences. In practice, I very strongly expect humans to find ways to build general reasoners to perform those tasks, before we figure out how to build narrow reasoners that can do them. (For the same basic reason evolution stumbled on general intelligence so early in the history of human tech development.)
When I say "general intelligence is very powerful", a lot of what I mean is that science is very powerful, and that having all of the sciences at once is a lot more powerful than the sum of each science's impact.
Another large piece of what I mean is that (STEM-level) general intelligence is a very high-impact sort of thing to automate because STEM-level AGI is likely to blow human intelligence out of the water immediately, or very soon after its invention.
80,000 Hours gives the (non-representative) example of how AlphaGo and its successors compared to the humanity:
In the span of a year, AI had advanced from being too weak to win a single [Go] match against the worst human professionals, to being impossible for even the best players in the world to defeat.
I expect general-purpose science AI to blow human science...
...more
View all episodesView all episodes
Download on the App Store

The Nonlinear LibraryBy The Nonlinear Fund

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

8 ratings